Instruction Manual DVC6200 Digital Valve Controller D103605X012 January 2015 Fisherr FIELDVUE™ DVC6200 Digital Valve Controller This manual applies to Instrument Level HC, AD, PD, ODV Device Type 09 Device Revision 1&2 Hardware Revision 2 Firmware Revision 2, 3, 4, 5 & 6 DD Revision 1, 2, 3, 4 & 5 Contents Section 1 Introduction . . . . . . . . . . . . . . . . . 3 Installation, Pneumatic and Electrical Connections,  and Initial Configuration . . . . . . . . . . . . . . . . . . . . . Scope of Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conventions Used in this Manual . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . Educational Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3 3 5 5 8 W9713 Section 2 Wiring Practices . . . . . . . . . . . . . . 9 Control System Requirements . . . . . . . . . . . . . . . . . . 9 HART Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Voltage Available . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Compliance Voltage . . . . . . . . . . . . . . . . . . . . . . . . 11 Auxiliary Terminal Wiring Length Guidelines . . . . 12 Maximum Cable Capacitance . . . . . . . . . . . . . . . . . 12 Installation in Conjunction with a Rosemountt  333 HART Tri‐Loopt HART‐to‐Analog   Signal Converter . . . . . . . . . . . . . . . . . . . . . . . . . 13 Section 3 Configuration . . . . . . . . . . . . . . . 15 Guided Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Manual Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode and Protection . . . . . . . . . . . . . . . . . . . . . . . . Instrument Mode . . . . . . . . . . . . . . . . . . . . . . . Write Protection . . . . . . . . . . . . . . . . . . . . . . . . Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Numbers . . . . . . . . . . . . . . . . . . . . . . . . . Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminal Box . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spec Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Edit Instrument Time . . . . . . . . . . . . . . . . . . . . www.Fisher.com 15 15 16 16 16 16 16 17 17 17 17 18 18 Travel/Pressure Control . . . . . . . . . . . . . . . . . . . . . . Travel/Pressure Select . . . . . . . . . . . . . . . . . . . Cutoffs and Limits . . . . . . . . . . . . . . . . . . . . . . . End Point Pressure Control . . . . . . . . . . . . . . . . Pressure Control . . . . . . . . . . . . . . . . . . . . . . . . Pressure Fallback . . . . . . . . . . . . . . . . . . . . . . . . Control Mode . . . . . . . . . . . . . . . . . . . . . . . . . . Characterization . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Response . . . . . . . . . . . . . . . . . . . . . . Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Travel Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure Tuning . . . . . . . . . . . . . . . . . . . . . . . . Travel/Pressure Integral Settings . . . . . . . . . . Valve and Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . Partial Stroke Test . . . . . . . . . . . . . . . . . . . . . . . . . . Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Terminal Configuration . . . . . . . . . . . . Switch Configuration . . . . . . . . . . . . . . . . . . . . HART Variable Assignments . . . . . . . . . . . . . . Transmitter Output . . . . . . . . . . . . . . . . . . . . . Alert Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Change to HART 5 / HART 7 . . . . . . . . . . . . . . . . . . . . 18 18 19 19 20 20 21 21 23 24 24 27 27 28 30 33 33 33 34 34 35 36 Instruction Manual DVC6200 Digital Valve Controller D103605X012 January 2015 Contents (continued) Section 4 Calibration . . . . . . . . . . . . . . . . . 37 Calibration Overview . . . . . . . . . . . . . . . . . . . . . . . . . Travel Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto Calibration . . . . . . . . . . . . . . . . . . . . . . . . Manual Calibration . . . . . . . . . . . . . . . . . . . . . . Pushbutton Calibration . . . . . . . . . . . . . . . . . . Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure Sensors . . . . . . . . . . . . . . . . . . . . . . . . Analog Input Calibration . . . . . . . . . . . . . . . . . Relay Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . Double‐Acting Relay . . . . . . . . . . . . . . . . . . . . . Single‐Acting Relays . . . . . . . . . . . . . . . . . . . . . PST Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 38 38 39 40 41 41 42 43 43 44 45 Section 5 Device Information, Diagnostics, and Alerts . . . . . . . . . . . . . . . 47 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status & Primary Purpose Variables . . . . . . . . . . . . Device Information . . . . . . . . . . . . . . . . . . . . . . . . . Service Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alert Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Travel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Travel History . . . . . . . . . . . . . . . . . . . . . . . . . . Alert Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stroke Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . Partial Stroke Test (ODV only) . . . . . . . . . . . . . Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 47 47 48 48 48 48 49 50 51 51 52 52 52 52 53 Section 6 Maintenance and Troubleshooting . . . . . . . . . . . . . . . . . . . . . 55 Replacing the Magnetic Feedback Assembly . . . . . . Module Base Maintenance . . . . . . . . . . . . . . . . . . . . . Tools Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component Replacement . . . . . . . . . . . . . . . . . . . . 56 56 56 57 Removing the Module Base . . . . . . . . . . . . . . . . . . Replacing the Module Base . . . . . . . . . . . . . . . . . . . Submodule Maintenance . . . . . . . . . . . . . . . . . . . . . . I/P Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Printed Wiring Board (PWB) Assembly . . . . . . . . . . Pneumatic Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gauges, Pipe Plugs or Tire Valves . . . . . . . . . . . . . . Terminal Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Removing the Terminal Box . . . . . . . . . . . . . . . . . . Replacing the Terminal Box . . . . . . . . . . . . . . . . . . . Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking Voltage Available . . . . . . . . . . . . . . . . . . . . Restart Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVC6200 Technical Support Checklist . . . . . . . . . . . 57 58 58 59 61 63 63 64 64 65 65 65 66 68 Section 7 Parts . . . . . . . . . . . . . . . . . . . . . . 69 Parts Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parts Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWB Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Common Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/P Converter Assembly . . . . . . . . . . . . . . . . . . . . . . Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminal Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feedback Connection Terminal Box . . . . . . . . . . . . Pressure Gauges, Pipe Plugs, or Tire Valve Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . DVC6215 Feedback Unit . . . . . . . . . . . . . . . . . . . . . HART Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 69 69 70 70 71 71 71 71 72 72 72 72 72 Appendix A Principle of Operation . . . . . . 79 HART Communication . . . . . . . . . . . . . . . . . . . . . . . . 79 DVC6200 Digital Valve Controller . . . . . . . . . . . . . . . 79 Appendix B Field Communicator  Menu Tree . . . . . . . . . . . . . . . . . . . . . . . . 83 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 The FIELDVUE DVC6200 Digital Valve Controller is a core component of the PlantWeb™ digital plant architecture. The digital valve controller powers PlantWeb by capturing and delivering valve diagnostic data. Coupled with ValveLink™ software, the DVC6200 provides users with an accurate picture of valve performance, including actual stem position, instrument input signal, and pneumatic pressure to the actuator. Using this information, the digital valve controller diagnoses not only itself, but also the valve and actuator to which it is mounted. 2 Instruction Manual D103605X012 Introduction January 2015 Section 1 Introduction Installation, Pneumatic and Electrical Connections, and Initial Configuration Refer to the DVC6200 Series Quick Start Guide (D103556X012) for DVC6200 installation, connection and initial configuration information. If a copy of this quick start guide is needed scan or click the QR code at the right, contact your Emerson Process Management sales office, or visit our website at www.Fisher.com. Scan or click to access field support Scope of Manual This instruction manual is a supplement to the DVC6200 Series Quick Start Guide that ships with every instrument. This instruction manual includes product specifications, reference materials, custom setup information, maintenance procedures, and replacement part details. This instruction manual describes using the 475 Field Communicator to set up and calibrate the instrument. You can also use Fisher ValveLink software or ValveLink Mobile software to setup, calibrate, and diagnose the valve and instrument. For information on using ValveLink software with the instrument refer to ValveLink software help or documentation. Do not install, operate, or maintain a DVC6200 digital valve controller without being fully trained and qualified in valve, actuator, and accessory installation, operation, and maintenance. To avoid personal injury or property damage, it is important to carefully read, understand, and follow all of the contents of this manual, including all safety cautions and warnings. If you have any questions about these instructions, contact your Emerson Process Management sales office before proceeding. Conventions Used in this Manual Navigation paths and fast‐key sequences are included for procedures and parameters that can be accessed using the Field Communicator. For example, to access Device Setup: Field Communicator Configure > Guided Setup > Device Setup (2‐1‐1) Refer to Appendix B for Field Communicator menu trees. Description DVC6200 digital valve controllers (figures 1‐1 and 1‐2) are communicating, microprocessor‐based current‐to‐pneumatic instruments. In addition to the normal function of converting an input current signal to a pneumatic output pressure, the DVC6200 digital valve controller, using the HARTr communications protocol, gives easy access to information critical to process operation. You can gain information from the principal component of the process, the control valve itself, using the Field Communicator at the valve, or at a field junction box, or by using a personal computer or operator's console within the control room. Using a personal computer and ValveLink software or AMS Suite: Intelligent Device Manager, or a Field Communicator, you can perform several operations with the DVC6200 digital valve controller. You can obtain general information concerning software revision level, messages, tag, descriptor, and date. 3 Instruction Manual Introduction D103605X012 January 2015 Figure 1‐1. FIELDVUE DVC6200 Digital Valve Controller Mounted on a Fisher Sliding-Stem Valve Actuator Figure 1‐2. FIELDVUE DVC6200 Digital Valve Controller Integrally Mounted to a Fisher GX Control Valve W9616 W9643 Diagnostic information is available to aid you when troubleshooting. Input and output configuration parameters can be set, and the digital valve controller can be calibrated. Refer to table 1‐1 for details on the capabilities of each diagnostic tier. Using the HART protocol, information from the field can be integrated into control systems or be received on a single loop basis. The DVC6200 digital valve controller is designed to directly replace standard pneumatic and electro‐pneumatic valve mounted positioners. Table 1‐1. Instrument Level Capabilities CAPABILITY DIAGNOSTIC LEVEL(2) HC AD PD ODV Auto Calibration X X X X Custom Characterization X X X X Burst Communication X X X X Alerts X X X X Step Response, Drive Signal Test & Dynamic Error Band X X X Advanced Diagnostics (Valve Signature) X X X Performance Tuner X X X Travel Control ‐ Pressure Fallback X X X Supply Pressure Sensor X X X Performance Diagnostics X X Solenoid Valve Testing X X Lead/Lag Set Point Filter(1) 1. Refer to brochure part # D351146X012 for information on Fisher optimized digital valves for compressor antisurge applications. 2. HC = HART Communicating ; AD = Advanced Diagnostics ; PD = Performance Diagnostics ; ODV = Optimized Digital Valve. 4 X Instruction Manual Introduction D103605X012 January 2015 Specifications WARNING Refer to table 1‐2 for specifications. Incorrect configuration of a positioning instrument could result in the malfunction of the product, property damage or personal injury. Specifications for DVC6200 digital valve controllers are shown in table 1‐2. Specifications for the Field Communicator can be found in the product manual for the Field Communicator. Related Documents This section lists other documents containing information related to the DVC6200 digital valve controller. These documents include: D Bulletin 62.1:DVC6200 - Fisher FIELDVUE DVC6200 Digital Valve Controller (D103415X012) D Bulletin 62.1:DVC6200 HC - Fisher FIELDVUE DVC6200 Digital Valve Controller (D103423X012) D Bulletin 62.1:DVC6200(S1) Fisher FIELDUVE DVC6200 Digital Valve Controller Dimensions (D103543X012) D Fisher FIELDVUE DVC6200 Series Digital Valve Controller Quick Start Guide (D103556X012) D FIELDVUE Digital Valve Controller Split Ranging (D103262X012) D Using FIELDVUE Instruments with the Smart HART Loop Interface and Monitor (HIM) (D103263X012) D Using FIELDVUE Instruments with the Smart Wireless THUMt Adapter and a HART Interface Module (HIM) (D103469X012) D Audio Monitor for HART Communications (D103265X012) D HART Field Device Specification - Supplement to Fisher FIELDVUE DVC6200 Digital Valve Controller (D103639X012) D Using the HART Tri‐Loop HART‐to‐Analog Signal Converter with FIELDVUE Digital Valve Controllers (D103267X012) D Implementation of Lock‐in‐Last Strategy (D103261X012) D Fisher HF340 Filter Instruction Manual (D102796X012) D 475 Field Communicator User's Manual D ValveLink Software Help or Documentation All documents are available from your Emerson Process Management sales office. Also visit our website at www.FIELDVUE.com. 5 Instruction Manual Introduction D103605X012 January 2015 Table 1‐2. Specifications volume (v/v) basis. Condensation in the air supply should be minimized. Available Mounting DVC6200 digital valve controller or DVC6215 feedback unit: J Integral mounting to the Fisher GX Control Valve and Actuator System J Window mounting to Fisher rotary actuators J Sliding‐stem linear applications J Quarter‐turn rotary applications Per ISO 8573-1 Maximum particle density size: Class 7 Oil content: Class 3 Pressure Dew Point: Class 3 or at least 10 K less than the lowest ambient temperature expected DVC6205 base unit for 2 inch pipestand or wall mounting (for remote‐mount) Output Signal The DVC6200 digital valve controller or DVC6215 feedback unit can also be mounted on other actuators that comply with IEC 60534‐6-1, IEC 60534-6-2, VDI/VDE 3845 and NAMUR mounting standards. Pneumatic signal, up to full supply pressure Minimum Span: 0.4 bar (6 psig) Maximum Span: 9.5 bar (140 psig) Action: J Double, J Single Direct or J Reverse Steady‐State Air Consumption(2)(3) Communication Protocol Standard Relay At 1.4 bar (20 psig) supply pressure: Less than 0.38 normal m3/hr (14 scfh) At 5.5 bar (80 psig) supply pressure: Less than 1.3 normal m3/hr (49 scfh) J HART 5 or J HART 7 Input Signal Point-to-Point Analog Input Signal: 4-20 mA DC, nominal; split ranging available Minimum Voltage Available at Instrument Terminals must be 9.5 VDC for analog control, 10 VDC for HART communication Minimum Control Current: 4.0 mA Minimum Current w/o Microprocessor Restart: 3.5 mA Maximum Voltage: 30 VDC Overcurrent protected Reverse Polarity protected Low Bleed Relay At 1.4 bar (20 psig) supply pressure: Average value 0.056 normal m3/hr (2.1 scfh) At 5.5 bar (80 psig) supply pressure: Average value 0.184 normal m3/hr (6.9 scfh) Maximum Output Capacity(2)(3) At 1.4 bar (20 psig) supply pressure: 10.0 normal m3/hr (375 scfh) At 5.5 bar (80 psig) supply pressure: 29.5 normal m3/hr (1100 scfh) Multi-drop Instrument Power: 11 to 30 VDC at 10 mA Reverse Polarity protected Operating Ambient Temperature Limits(1)(4) -40 to 85_C (-40 to 185_F) -52 to 85_C (-62 to 185_F) for instruments utilizing the Extreme Temperature option (fluorosilicone elastomers) -52 to 125_C (-62 to 257_F) for remote‐mount feedback unit Supply Pressure(1) Minimum Recommended: 0.3 bar (5 psig) higher than maximum actuator requirements Maximum: 10.0 bar (145 psig) or maximum pressure rating of the actuator, whichever is lower Medium: Air or Natural Gas Independent Linearity(5) Air: Supply pressure must be clean, dry air that meets the requirements of ISA Standard 7.0.01. Typical Value: ±0.50% of output span Natural Gas: Natural Gas must be clean, dry, oil-free and noncorrosive. H2S content should not exceed 20 ppm. Electromagnetic Compatibility Meets EN 61326-1 (First Edition)  Immunity—Industrial locations per Table 2 of   the EN 61326-1 standard. Performance is   shown in table 1‐3 below.  Emissions—Class A   ISM equipment rating: Group 1, Class A A maximum 40 micrometer particle size in the air system is acceptable. Further filtration down to 5 micrometer particle size is recommended. Lubricant content is not to exceed 1 ppm weight (w/w) or -continued- 6 Instruction Manual Introduction D103605X012 January 2015 Table 1‐2. Specifications (continued) Output Pressure: 1/4 NPT internal Tubing: 3/8‐inch recommended Vent: 3/8 NPT internal Electrical: 1/2 NPT internal, M20 adapter optional Lightning and Surge Protection—The degree of immunity to lightning is specified as Surge immunity in table 1‐3. For additional surge protection commercially available transient protection devices can be used. Actuator Compatibility Vibration Testing Method Stem Travel (Sliding‐Stem Linear) Minimum: 6.5 mm (0.25 inch) Maximum: 606 mm (23.875 inches) Tested per ANSI/ISA-S75.13.01 Section 5.3.5. A resonant frequency search is performed on all three axes. The instrument is subjected to the ISA specified 1/2 hour endurance test at each major resonance. Shaft Rotation (Quarter‐Turn Rotary) Minimum: 45_ Maximum: 90_ Input Impedance An equivalent impedance of 500 ohms may be used. This value corresponds to 10V @ 20 mA. Weight DVC6200 Aluminum: 3.5 kg (7.7 lbs) Stainless Steel: 8.6 kg (19 lbs) Humidity Testing Method Tested per IEC 61514‐2 DVC6205: 4.1 kg (9 lbs) DVC6215: 1.4 kg (3.1 lbs) Electrical Classification Hazardous Area Approvals CSA— Intrinsically Safe, Explosion‐proof, Division 2, Dust Ignition-proof FM— Intrinsically Safe, Explosion‐proof, Dust Ignition-proof, Non-Incendive ATEX— Intrinsically Safe, Flameproof, Type n IECEx— Intrinsically Safe, Flameproof, Type n Construction Materials Housing, module base and terminal box: A03600 low copper aluminum alloy (standard) Stainless steel (optional) Cover: Thermoplastic polyester Elastomers: Nitrile (standard) Fluorosilicone (extreme temperature) Electrical Housing CSA— Type 4X, IP66 FM— Type 4X, IP66 ATEX— IP66 IECEx— IP66 Options J Supply and output pressure gauges or J Tire valves J Integral mounted filter regulator J Low‐Bleed Relay J Extreme Temperature J Remote Mount(6) J Stainless Steel J Integral 4‐20 mA Position Transmitter(7): Other Classifications/Certifications CUTR— Customs Union Technical Regulations (Russia, Kazakhstan and Belarus) INMETRO— National Institute of Metrology, Quality, and Technology (Brazil) PESO CCOE— Petroleum and Explosives Safety Organisation - Chief Controller of Explosives (India) Contact your Emerson Process Management sales office for classification/certification specific information. 4‐20 mA output, isolated Supply Voltage: 8‐30 VDC Fault Indication: offrange high or low Reference Accuracy: 1% of travel span J Integral Switch(7): One isolated switch, configurable throughout the calibrated travel range or actuated from a device alert Off State: 0 mA (nominal) On State: up to 1 A Supply Voltage: 30 VDC maximum Reference Accuracy: 2% of travel span Connections Contact your Emerson Process Management sales office or go to www.FIELDVUE.com for additional information Supply Pressure: 1/4 NPT internal and integral pad for mounting 67CFR regulator -continued- 7 Instruction Manual Introduction D103605X012 January 2015 Table 1‐2. Specifications (continued) Declaration of SEP Fisher Controls International LLC declares this product to be in compliance with Article 3 paragraph 3 of the Pressure Equipment Directive (PED) 97 / 23 / EC. It was designed and manufactured in accordance with Sound Engineering Practice (SEP) and cannot bear the CE marking related to PED compliance. However, the product may bear the CE marking to indicate compliance with other applicable European Community Directives. NOTE: Specialized instrument terms are defined in ANSI/ISA Standard 51.1 - Process Instrument Terminology. 1. The pressure/temperature limits in this document and any other applicable code or standard should not be exceeded. 2. Normal m3/hour - Normal cubic meters per hour at 0_C and 1.01325 bar, absolute. Scfh - Standard cubic feet per hour at 60_F and 14.7 psia. 3. Values at 1.4 bar (20 psig) based on a single-acting direct relay; values at 5.5 bar (80 psig) based on double-acting relay. 4. Temperature limits vary based on hazardous area approval. 5. Not applicable for travels less than 19 mm (0.75 inch) or for shaft rotation less than 60 degrees. Also not applicable for digital valve controllers in long‐stroke applications. 6. 4‐conductor shielded cable, 18 to 22 AWG minimum wire size, in rigid or flexible metal conduit, is required for connection between base unit and feedback unit. Pneumatic tubing between base unit output connection and actuator has been tested to 91 meters (300 feet). At 15 meters (50 feet) there was no performance degradation. At 91 meters there was minimal pneumatic lag. 7. The electronic output is available with either the position transmitter or the switch. Table 1‐3. EMC Summary Results—Immunity Port Enclosure Phenomenon Basic Standard Electrostatic discharge (ESD) IEC 61000‐4‐2 Radiated EM field IEC 61000‐4‐3 Rated power frequency magnetic field Burst I/O signal/control Test Level 4 kV contact 8 kV air 80 to 1000 MHz @ 10V/m with 1 kHz AM at 80% 1400 to 2000 MHz @ 3V/m with 1 kHz AM at 80% 2000 to 2700 MHz @ 1V/m with 1 kHz AM at 80% Performance Criteria(1) A A IEC 61000‐4‐8 30 A/m at 50/60Hz A IEC 61000‐4‐4 1 kV A Surge IEC 61000‐4‐5 1 kV B Conducted RF IEC 61000‐4‐6 150 kHz to 80 MHz at 3 Vrms A Performance criteria: +/- 1% effect. 1. A = No degradation during testing. B = Temporary degradation during testing, but is self‐recovering. Educational Services For information on available courses for the DVC6200 digital valve controller, as well as a variety of other products, contact: Emerson Process Management Educational Services - Registration Phone: +1-641‐754‐3771 or +1-800‐338‐8158 or e‐mail: education@emerson.com http://www.emersonprocess.com/education 8 Instruction Manual Wiring Practices D103605X012 January 2015 Section 2 Wiring Practices22 Control System Requirements There are several parameters that should be checked to ensure the control system is compatible with the DVC6200 digital valve controller. HART Filter Depending on the control system you are using, a HART filter may be needed to allow HART communication. The HART filter is a passive device that is inserted in field wiring from the HART loop. The filter is normally installed near the field wiring terminals of the control system I/O (see figure 2‐1). Its purpose is to effectively isolate the control system output from modulated HART communication signals and raise the impedance of the control system to allow HART communication. For more information on the description and use of the HART filter, refer to the appropriate HART filter instruction manual. To determine if your system requires a filter contact your Emerson Process Management sales office. Note A HART filter is typically NOT required for any of the Emerson Process Management control systems, including PROVOXt, RS3t, and DeltaVt systems. Figure 2‐1. HART Filter Application NON‐HART BASED DCS I/O I/O HART FILTER 4‐20 mA + HART DIGITAL VALVE CONTROLLER Tx Tx VALVE A6188‐1 Voltage Available The voltage available at the DVC6200 digital valve controller must be at least 10 VDC. The voltage available at the instrument is not the actual voltage measured at the instrument when the instrument is connected. The voltage measured at the instrument is limited by the instrument and is typically less than the voltage available. 9 Instruction Manual Wiring Practices D103605X012 January 2015 As shown in figure 2‐2, the voltage available at the instrument depends upon: D the control system compliance voltage D if a filter, wireless THUM adapter, or intrinsic safety barrier is used, and D the wire type and length. The control system compliance voltage is the maximum voltage at the control system output terminals at which the control system can produce maximum loop current. The voltage available at the instrument may be calculated from the following equation: Voltage Available = [Control System Compliance Voltage (at maximum current)] - [filter voltage drop (if a HART filter is used)] - [total cable resistance maximum current] - [barrier resistance x maximum current]. The calculated voltage available should be greater than or equal to 10 volts DC. Table 2‐1 lists the resistance of some typical cables. The following example shows how to calculate the voltage available for a Honeywellt TDC2000 control system with a HF340 HART filter, and 1000 feet of Beldent 9501 cable: Voltage available = [18.5 volts (at 21.05 mA)] - [2.3 volts] - [48 ohms 0.02105 amps] Voltage available = [18.5] - [2.3] - [1.01] Voltage available = 15.19 volts Figure 2‐2. Determining Voltage Available at the Instrument TOTAL LOOP CABLE RESISTANCE COMPLIANCE VOLTAGE THUM ADAPTER (IF USED) CONTROL SYSTEM + - INTRINSIC SAFETY BARRIER (if used) HART FILTER (if used) Calculate Voltage Available at the Instrument as follows: VOLTAGE + AVAILABLE AT THE - INSTRUMENT Example Calculation 18.5 volts (at 21.05 mA) Control system compliance voltage – Filter voltage drop (if used) R 1 – 2.3 volts (for HF300 filter) – Intrinsic safety barrier resistance (if used) x maximum loop current – Smart Wireless THUM adapter voltage drop (if used) 2 – 2.55 volts (121 ohms x 0.02105 amps) – Total loop cable resistance x maximum loop current – 1.01 volts (48 ohms x 0.02105 amps for 1000 feet of Belden 9501 cable) = Voltage available at the instrument 3 = 15.19 volts, available—if safety barrier (2.55 volts) is not used NOTES: 1 Obtain filter voltage drop. The measured drop will be different than this value. The measured filter voltage drop depends upon control system output voltage, the intrinsic safety barrier (if used), and the instrument. See note 3. 10 2 The voltage drop of the THUM adapter is linear from 2.25 volts at 3.5 mA to 1.2 volts at 25 mA. 3 The voltage available at the instrument is not the voltage measured at the instrument terminals. Once the instrument is connected, the instrument limits the measured voltage to approximately 8.0 to 9.5 volts. Instruction Manual Wiring Practices D103605X012 January 2015 Table 2‐1. Cable Characteristics Capacitance(1) pF/Ft Capacitance(1) pF/m Resistance(2) Ohms/ft Resistance(2) Ohms/m BS5308/1, 0.5 sq mm 61.0 200 0.022 0.074 BS5308/1, 1.0 sq mm 61.0 200 0.012 0.037 BS5308/1, 1.5 sq mm 61.0 200 0.008 0.025 BS5308/2, 0.5 sq mm 121.9 400 0.022 0.074 BS5308/2, 0.75 sq mm 121.9 400 0.016 0.053 BS5308/2, 1.5 sq mm 121.9 400 0.008 0.025 BELDEN 8303, 22 awg 63.0 206.7 0.030 0.098 BELDEN 8441, 22 awg 83.2 273 0.030 0.098 BELDEN 8767, 22 awg 76.8 252 0.030 0.098 BELDEN 8777, 22 awg 54.9 180 0.030 0.098 BELDEN 9501, 24 awg 50.0 164 0.048 0.157 BELDEN 9680, 24 awg 27.5 90.2 0.048 0.157 BELDEN 9729, 24 awg 22.1 72.5 0.048 0.157 BELDEN 9773, 18 awg 54.9 180 0.012 0.042 BELDEN 9829, 24 awg 27.1 88.9 0.048 0.157 BELDEN 9873, 20 awg 54.9 180 0.020 0.069 Cable Type 1. The capacitance values represent capacitance from one conductor to all other conductors and shield. This is the appropriate value to use in the cable length calculations. 2. The resistance values include both wires of the twisted pair. Compliance Voltage If the compliance voltage of the control system is not known, perform the following compliance voltage test. 1. Disconnect the field wiring from the control system and connect equipment as shown in figure 2‐3 to the control system terminals. Figure 2‐3. Voltage Test Schematic 1 kW POTENTIOMETER MILLIAMMETER VOLTMETER CIRCUIT UNDER TEST A6192‐1 2. Set the control system to provide maximum output current. 3. Increase the resistance of the 1 kW potentiometer, shown in figure 2‐3, until the current observed on the milliammeter begins to drop quickly. 4. Record the voltage shown on the voltmeter. This is the control system compliance voltage. For specific parameter information relating to your control system, contact your Emerson Process Management sales office. 11 Wiring Practices January 2015 Instruction Manual D103605X012 Auxiliary Terminal Wiring Length Guidelines The Auxiliary Input Terminals of a DVC6200 with instrument level ODV can be used with a locally‐mounted switch for initiating a partial stroke test. Some applications require that the switch be installed remotely from the DVC6200. The length for wiring connected to the Auxiliary Input Terminals is limited by capacitance. For proper operation of the Auxiliary Input Terminals capacitance should not exceed 100,000 pF. As with all control signal wiring, good wiring practices should be observed to minimize adverse effect of electrical noise on the Aux Switch function. Example Calculation: Capacitance per foot or per meter is required to calculate the length of wire that may be connected to the Aux switch input. The wire should not exceed the capacitance limit of 100,000 pF. Typically the wire manufacturer supplies a data sheet which provides all of the electrical properties of the wire. The pertinent parameter is the highest possible capacitance. If shielded wire is used, the appropriate number is the “Conductor to Other Conductor & Shield” value. Example — 18AWG Unshielded Audio, Control and Instrumentation Cable Manufacturer's specifications include: Nom. Capacitance Conductor to Conductor @ 1 KHz: 26 pF/ft Nom. Conductor DC Resistance @ 20 Deg. C: 5.96 Ohms/1000 ft Max. Operating Voltage - UL 200 V RMS (PLTC, CMG),150 V RMS (ITC) Allowable Length with this cable = 100,000pF /(26pF/ft) = 3846 ft Example — 18AWG Shielded Audio, Control and Instrumentation Cable Manufacturer's specifications include: Nom. Characteristic Impedance: 29 Ohms Nom. Inductance: .15 μH/ft Nom. Capacitance Conductor to Conductor @ 1 KHz: 51 pF/ft Nom. Cap. Cond. to other Cond. & Shield @ 1 KHz 97 pF/ft Allowable Length with this cable = 100,000pF /(97pF/ft) = 1030 ft The AUX switch input passes less than 1 mA through the switch contacts, and uses less than 5V, therefore, neither the resistance nor the voltage rating of the cable are critical. Ensure that switch contact corrosion is prevented. It is generally advisable that the switch have gold‐plated or sealed contacts. Maximum Cable Capacitance The maximum cable length for HART communication is limited by the characteristic capacitance of the cable. Maximum length due to capacitance can be calculated using the following formulas: Length(ft) = [160,000 - Cmaster(pF)] [Ccable(pF/ft)] Length(m) = [160,000 - Cmaster(pF)] [Ccable(pF/m)] where: 160,000 = a constant derived for FIELDVUE instruments to ensure that the HART network RC time constant will be no greater than 65 μs (per the HART specification). Cmaster = the capacitance of the control system or HART filter 12 Instruction Manual Wiring Practices D103605X012 January 2015 Ccable = the capacitance of the cable used (see table 2‐1) The following example shows how to calculate the cable length for a Foxborot I/A control system (1988) with a Cmaster of 50, 000 pF and a Belden 9501 cable with characteristic capacitance of 50pF/ft. Length(ft) = [160,000 - 50,000pF] [50pF/ft] Length = 2200 ft. The HART communication cable length is limited by the cable characteristic capacitance. To increase cable length, select a wire with lower capacitance per foot. Contact your Emerson Process Management sales office for specific information relating to your control system. Installation in Conjunction with a Rosemount 333 HART Tri‐Loop HART‐to‐Analog Signal Converter Use the DVC6200 digital valve controller in operation with a Rosemount 333 HART Tri‐Loop HART‐to‐Analog Signal Converter to acquire an independent 4‐20 mA analog output signal for the analog input, travel target, pressure, or travel. The HART Tri‐Loop accepts any three of these digital signals and converts them into three separate 4‐20 mA analog channels. Refer to figure 2‐4 for basic installation information. Refer to the 333 HART Tri‐Loop HART‐to‐Analog Signal Converter Product Manual for complete installation information. Figure 2‐4. HART Tri‐Loop Installation Flowchart START HERE Unpack the HART Tri‐Loop Install the HART Tri‐ Loop. See HART Tri‐ Loop product manual Review the HART Tri‐Loop Product Manual Digital valve controller Installed? Yes Mount the HART Tri‐Loop to the DIN rail. No Install the digital valve controller. Wire the digital valve controller to the HART Tri‐Loop. Set the digital valve controller Burst Option Install Channel 1 wires from HART Tri‐Loop to the control room. Set the digital valve controller Burst Mode (Optional) Install Channel 2 and 3 wires from HART Tri‐Loop to the control room. Configure the HART Tri‐Loop to receive digital valve controller burst commands Pass system test? Yes No Check troubleshooting procedures in HART Tri‐Loop product manual. DONE E0365 13 Instruction Manual Wiring Practices D103605X012 January 2015 Commissioning the Digital Valve Controller for use with the HART Tri‐Loop Signal Converter To prepare the digital valve controller for use with a 333 HART Tri‐Loop, you must configure the digital valve controller to burst mode, and select Burst Command 3. In burst mode, the digital valve controller provides digital information to the HART Tri‐Loop HART‐to‐Analog Signal Converter. The HART Tri‐Loop converts the digital information to a 4 to 20 mA analog signal. Each burst message contains the latest value of the primary (analog input), secondary (travel target), tertiary (configured output pressure), and quaternary (travel) variables. To commission a DVC6200 for use with a HART Tri‐Loop, perform the following procedures. Note The DVC6200 must be in HART 5 compatibility mode to use burst communications. Enable Burst Operation Field Communicator With I/O Package Configure > Manual Setup > Outputs > Burst Mode (2‐2‐6‐5) HC, AD, PD or (2-2-7-5) ODV Without I/O Package Configure > Manual Setup > Outputs > Burst Mode (2‐2‐6‐2) HC, AD, PD or (2-2-7-2) ODV Select Burst Enable and follow the prompts to enable burst mode. Then select Burst Command and follow the prompts to configure Loop Current/PV/SV/TV/QV. Select the HART Variable Assignments Field Communicator With I/O Package Configure > Manual Setup > Outputs > HART Variable Assignments (2-2-6-4) HC, AD, PD or (2-2-7-4) ODV Without I/O Package Configure > Manual Setup > Outputs > HART Variable Assignments (2-2-6-1) HC, AD, PD or (2-2-7-1) ODV Configure the HART Variable Assignments. The Primary Variable (PV) is always Analog Input. The Secondary Variable (SV), Tertiary Variable (TV) and Quaternary Variable (QV) can be configured to any of the following variables. D Setpoint D Travel (see note below) D Pressure A D Pressure B D Pressure A­B D Supply Pressure D Drive Signal D Analog Input Note If the instrument is configured to operate in pressure control mode, or detects an invalid travel sensor reading, the Travel variable will report pressure in percent of bench set range. 14 Instruction Manual Configuration D103605X012 January 2015 Section 3 Configuration Guided Setup Field Communicator Configure > Guided Setup (2‐1) To quickly setup the instrument, the following procedures will guide you through the process. D Device Setup—This procedure is used to configure actuator and valve information, calibrate the valve assembly, and assign the tuning set for the valve assembly. D Performance Tuner (instrument level AD, PD, ODV)—This procedure executes a simple step response test and then calculates a recommended set of gain values based on the response of the control valve. See page 26 for additional information. D Stabilize Optimize (instrument level HC)—This procedure permits you to adjust valve response by changing the digital valve controller tuning. See page 26 for additional information. Manual Setup33 Manual Setup allows you to configure the digital valve controller to your application. Table 3‐1 lists the default settings for a standard factory configuration. You can adjust actuator response, set the various modes, alerts, ranges, travel cutoffs and limits. You can also restart the instrument and set the protection. Table 3‐1. Default Detailed Setup Parameters Setup Parameter Control Mode Analog Restart Control Mode Instrument Configuration Resume Last Analog In Range Low 4 mA Analog In Range High 20 mA Analog Input Units Local AutoCal Button Polling Address Burst Mode Enable Burst Command Cmd 3 (Trending) Pressure mA Disabled 0 No 3 A-B Input Characterization Linear Travel Limit High 125% Travel Limit Low Travel/Pressure Cutoff High Dynamic Response and Tuning Default Setting(1) -25% 99.46% Travel/Pressure Cutoff Low 0.50% Set Point Rate Open 0%/sec Set Point Rate Close 0%/sec Set Point Filter Time (Lag Time) Integrator Enable Integral Gain 0 sec Yes 9.4 repeats/minute Integral Deadzone 0.26% -continued on next page- 15 Instruction Manual Configuration D103605X012 January 2015 Table 3‐1. Default Detailed Setup Parameters (continued) Setup Parameter Default Setting(1) Travel Deviation Alert Enable Travel Deviation Alert Point Travel Deviation Time Deviation & Other Alerts Pressure Deviation Alert Enable Yes 5% 9.99 sec Yes Pressure Deviation Alert Point 5 psi(2) Pressure Deviation Alert Time 5.0 sec Drive Signal Alert Enable Yes Supply Pressure Alert Enable Yes 1. The settings listed are for standard factory configuration. DVC6200 instruments can also be ordered with custom configuration settings. Refer to the order requisition for the custom settings. 2. Adjust to bar, kPa, or Kg/cm2 if necessary Mode and Protection Field Communicator Configure > Manual Setup > Mode and Protection (2‐2‐1) Instrument Mode There are two instrument modes for the DVC6200; In Service or Out of Service. In Service is the normal operating mode such that the instrument follows the 4­20 mA control signal. Out of Service is required in some cases to modify configuration parameters or to run diagnostics. Note Some changes that require the instrument to be taken Out Of Service will not take effect until the instrument is placed back In Service or the instrument is restarted. Write Protection There are two Write Protection modes for the DVC6200: Not Protected or Protected. Protected prevents configuration and calibration changes to the instrument. The default setting is Not Protected. Write Protection can be changed to Protected remotely. However, to change Write Protection to Not Protected, you must have physical access to the instrument. The procedure will require you to press a button ( ) on the terminal box as a security measure. Instrument Field Communicator Configure > Manual Setup > Instrument (2‐2‐2) Follow the prompts on the Field Communicator display to configure the following Instrument parameters: Identification D HART Tag—A tag name up to 8 characters is available for the instrument. The HART tag is the easiest way to distinguish between instruments in a multi‐instrument environment. Use the HART tag to label instruments electronically according to the requirements of your application. The tag you assign is automatically displayed when the Field Communicator establishes contact with the digital valve controller at power‐up. D HART Long Tag (HART Universal Revision 7 only)—A tag name up to 32 characters is available for the instrument. 16 Instruction Manual Configuration D103605X012 January 2015 D Description—Enter a description for the application with up to 16 characters. The description provides a longer user‐defined electronic label to assist with more specific instrument identification than is available with the HART tag. D Message—Enter any message with up to 32 characters. Message provides the most specific user‐defined means for identifying individual instruments in multi‐instrument environments. D Polling Address—If the digital valve controller is used in point‐to‐point operation, the Polling Address is 0. When several devices are connected in the same loop, such as for split ranging, each device must be assigned a unique polling address. The Polling Address is set to a value between 0 and 63 for HART 7 and 0 and 15 for HART 5. To change the polling address the instrument must be Out Of Service. For the Field Communicator to be able to communicate with a device whose polling address is not 0, it must be configured to automatically search for all or specific connected devices. Serial Numbers D Instrument Serial Number—Enter the serial number on the instrument nameplate, up to 12 characters. D Valve Serial Number—Enter the serial number for the valve in the application, up to 12 characters. Units D Pressure Units—Defines the output and supply pressure units in either psi, bar, kPa, or kg/cm2. D Temperature Units—Degrees Fahrenheit or Celsius. The temperature measured is from a sensor mounted on the digital valve controller's printed wiring board. D Analog Input Units—Permits defining the Analog Input Units in mA or percent of 4-20 mA range. Terminal Box D Calibration (CAL) Button—This button is near the wiring terminals in the terminal box and provides a quick means to autocalibrate the instrument. The button must be pressed for 3 to 10 seconds. Autocalibration will move the valve through the full range of travel whether the Instrument Mode is In Service or Out of Service. However, if the Write Protection is Protected, this button will not be active. To abort, press the button again for 1 second. The calibration button is disabled by default. D Auxiliary Terminal Action—These wire terminals can be configured to initiate a partial stroke test upon detection of a short across the (+) and (-) terminals. The terminals must be shorted for 3 to 10 seconds. Note Auxiliary Terminal Action is only available for instrument level ODV. Analog Input Range D Input Range Hi—Permits setting the Input Range High value. Input Range High should correspond to Travel Range High, if the Zero Power Condition is configured as closed. If the Zero Power Condition is configured as open, Input Range High corresponds to Travel Range Low. See figure 3‐1. 17 Instruction Manual Configuration D103605X012 January 2015 D Input Range Lo—Permits setting the Input Range Low value. Input Range Low should correspond to Travel Range Low, if the Zero Power Condition is configured as closed. If the Zero Power Condition is configured as open, Input Range Low corresponds to Travel Range High. See figure 3‐1. Figure 3‐1. Calibrated Travel to Analog Input Relationship TRAVEL RANGE HIGH ZPC = OPEN CALIBRATED TRAVEL, % ZPC = CLOSED THE SHAPE OF THESE LINES DEPENDS ON THE INPUT CHARACTERISTICS LINEAR CHARACTERISTIC SHOWN TRAVEL RANGE LOW INPUT RANGE LOW ANALOG INPUT mA OR % OF 4‐20 mA INPUT RANGE HIGH NOTE: ZPC = ZERO POWER CONDITION A6531‐1 Spec Sheet The Spec Sheet provides a means to store the entire control valve specifications on board the DVC6200. Edit Instrument Time Permits setting the instrument clock. When alerts are stored in the alert record, the record includes the time and date. The instrument clock uses a 24‐hour format. Travel/Pressure Control Field Communicator Configure > Manual Setup > Travel/Pressure Control (2‐2-3) Travel/Pressure Select This defines the operating mode of the instrument as well as the behavior of the instrument should the travel sensor fail. There are four choices. D Travel Control—The instrument is controlling to a target travel. Fallback is not enabled. D Pressure Control—The instrument is controlling to a target pressure. Fallback is not enabled. D Fallback-Sensor Failure—The instrument will fallback to pressure control if a travel sensor failure is detected. 18 Instruction Manual D103605X012 Configuration January 2015 D Fallback-Sensor/Tvl Deviation—The instrument will fallback to pressure control if a travel sensor failure is detected, or if the Tvl Dev Press Fallback setting is exceeded for more than the Tvl Dev Press Fallback Time. Note Travel / Pressure Select must be set to Travel for double‐acting actuators Cutoffs and Limits D Hi Limit/Cutoff Select—When the Hi Cutoff/Limit Select is configured for Cutoff, the Travel Target is set to 123% when the Travel exceeds the Hi Cutoff Point. When the Hi Cutoff/Limit Select is configured for Limit, the Travel Target will not exceed the Hi Limit Point. D Hi Limit/Cutoff Point—This is the point within the calibrated travel range above which the Limit or Cutoff is in effect. When using cutoffs, a Cutoff Hi of 99.5% is recommended to ensure valve goes fully open. The Hi Cutoff/Limit is deactivated by setting it to 125%. D Lo Limit/Cutoff Select—When the Lo Cutoff/Limit Select is configured for Cutoff, the Travel Target is set to ­23% when the Travel is below the Lo Cutoff Point. When the Hi Cutoff/Limit Select is configured for Limit, the Travel Target will not fall below the Lo Limit Point. D Lo Limit/Cutoff Point—This is the point within the calibrated travel range below which the Limit or Cutoff is in effect. When using cutoffs, a Cutoff Lo of 0.5% is recommended to help ensure maximum shutoff seat loading. The Lo Limit/Cutoff is deactivated by setting it to ­25%. End Point Pressure Control (EPPC) Note End Point Pressure Control is available for instrument level ODV. D EPPC Enable—Select Yes or No. End Point Pressure Control allows the digital valve controller to pull back from saturation of the pneumatic output after reaching the travel extreme. Rather than having the instrument provide full supply pressure (saturation) continuously at the travel extreme, the digital valve controller switches to an End Point Pressure Control where the output pressure (pressure controller set point) to the actuator is maintained at a certain value. This value is configured through the Upper Operating Pressure feature. Because the digital valve controller is constantly in control and not allowed to reach a dormant or saturated state, it is constantly testing its own pneumatic system. If there is an output pressure deviation, for example, the instrument will issue an alert. To ensure there is an alert when an output pressure deviation occurs, setup the alert as described under Pressure Deviation Alert. 19 Configuration January 2015 Instruction Manual D103605X012 D EPPC Set Point—Used in conjunction with End Point Pressure Control, End Point Pressure Control Set Point allows the user to select a pressure to be delivered by the instrument at the travel extreme. For a fail‐closed valve, this pressure must be sufficient to maintain the fully open position. For a fail‐open valve, this pressure (which is automatically set to supply pressure) must be sufficient to fully close the valve and maintain its rated shutoff classification. For double‐acting spring return actuators, this is the differential pressure required to either maintain the fully open or fully closed position, depending on the valve and actuator configuration. For a double‐acting actuator without springs with a fail‐close valve, this is 95% of the supply pressure. If the valve is fail‐open, the upper operating pressure for all actuator is set to the supply pressure. D EPPC Saturation Time—End Point Pressure Control Saturation Time is the time the digital valve controller stays in hard cutoff before switching to pressure control. Default is 45 seconds. Pressure Control D Pressure Range High—The high end of output pressure range. Enter the pressure that corresponds with 100% valve travel when Zero Power Condition is closed, or 0% valve travel when Zero Power Condition is open. This pressure must be greater than the Pressure Range Lo. D Pressure Range Lo—The low end of the output pressure range. Enter the pressure that corresponds to 0% valve travel when Zero Power Condition is closed, or 100% valve travel when Zero Power Condition is open. This pressure must be less than the Pressure Range Hi. Pressure Fallback Note Pressure Fallback is available for instrument level AD, PD, ODV. D Tvl Dev Press Fallback—When the difference between the travel target and the actual travel exceeds this value for more than the Tvl Dev Press Fallback Time, the instrument will disregard the travel feedback and control based on output pressure. D Tvl Dev Press Fallback Time—This is the time, in seconds, that the travel target and the actual travel must be exceeded before the instrument falls back into pressure control. D Fallback Recovery—If the instrument has fallen into pressure control and the feedback problem is resolved, recovery to travel control can occur automatically or with manual intervention. To return to travel control when Manual Recovery is selected, change the Fallback Recovery to Auto Recovery, and then back to Manual Recovery (if desired). 20 Instruction Manual D103605X012 Configuration January 2015 Control Mode D Control Mode—This displays the current control mode of the instrument. This will show Analog if the instrument is in Point­to­Point mode and is using a 4­20 mA signal for its power and set point. This will show Digital if the instrument is in Multidrop mode and is using 24 VDC for power and a digital set point for control. Note Another mode, Test, may be displayed. Normally the instrument should not be in the Test mode. The digital valve controller automatically switches to this mode whenever it needs to stroke the valve during calibration or stroke valve, for example. However, if you abort from a procedure where the instrument is in the test mode, it may remain in this mode. To take the instrument out of the Test mode, select Change Control Mode and enter Analog or Digital. D Change Control Mode—This allows the user to configure the control mode to Analog or Digital. D Restart Control Mode—This defines the Control Mode of the instrument after a restart (e.g. power cycle). Available choices are Resume Last, Analog and Digital. Characterization D Input Characterization Input Characterization defines the relationship between the travel target and ranged set point. Ranged set point is the input to the characterization function. If the zero power condition equals closed, then a set point of 0% corresponds to a ranged input of 0%. If the zero power condition equals open, a set point of 0% corresponds to a ranged input of 100%. Travel target is the output from the characterization function. To select an input characterization, select Input Characterization from the Characterization menu. You can select from the three fixed input characteristics shown in figure 3‐2 or you can select a custom characteristic. Figure 3‐2 shows the relationship between the travel target and ranged set point for the fixed input characteristics, assuming the Zero Power Condition is configured as closed. You can specify 21 points on a custom characteristic curve. Each point defines a travel target, in % of ranged travel, for a corresponding set point, in % of ranged set point. Set point values range from -6.25% to 106.25%. Before modification, the custom characteristic is linear. D Custom Characterization To define a custom input character, select Custom Characterization from the Characterization menu. Select the point you wish to define (1 to 21), then enter the desired set point value. Press Enter then enter the desired travel target for the corresponding set point. When finished, select point 0 to return to the Characterization menu. With input characterization you can modify the overall characteristic of the valve and instrument combination. Selecting an equal percentage, quick opening, or custom (other than the default of linear) input characteristic modifies the overall valve and instrument characteristic. However, if you select the linear input characteristic, the overall valve and instrument characteristic is the characteristic of the valve, which is determined by the valve trim (i.e., the plug or cage). 21 Instruction Manual Configuration D103605X012 January 2015 Figure 3‐2. Travel Target Versus Ranged Set Point, for Various Input Characteristics (Zero Power Condition = Closed) 125 100 100 Travel Target, % Travel Target, % 125 0 0 -25 -25 0 -25 Ranged Set Point, % 100 125 Input Characteristic = Linear -25 0 125 Travel Target, % 100 0 -25 -25 0 Ranged Set Point, % 100 Input Characteristic = Quick Opening A6535‐1 22 Ranged Set Point, % 100 Input Characteristic = Equal Percentage 125 125 Instruction Manual Configuration D103605X012 January 2015 Dynamic Response D SP Rate Open—Maximum rate (% of valve travel per second) at which the digital valve controller will move to the open position regardless of the rate of input current change. A value of 0 will deactivate this feature and allow the valve to stroke open as fast as possible. In firmware 2, 3, and 4 this parameter should be set to 0. D SP Rate Close—Maximum rate (% of valve travel per second) at which the digital valve controller will move to the close position regardless of the rate of input current change. A value of 0 will deactivate this feature and allow the valve to stroke close as fast as possible. In firmware 2, 3, and 4 this parameter should be set to 0. D Set Point Filter Time (Lag Time)—The Set Point Filter Time (Lag Time) slows the response of the digital valve controller. A value ranging from 0.2 to 10.0 can be used for noisy or fast processes to improve closed loop process control. Entering a value of 0.0 will deactivate the lag filter. In firmware 2, 3, and 4 this parameter should be set to 0. Note Set Point Filter Time (Lag Time) is available for instrument level HC, AD, and PD. D Lead/Lag Set Point Filter—ODV devices have access to a lead‐lag set point filter that can be used to improve a valve's dynamic response. The lead‐lag filter is part of the set point processing routine that reshapes the input signal before it becomes travel set point. Lead‐lag filters are characterized by lead and lag time constants. Note Lead/Lag is only available for instrument level ODV. When the valve is in its active control region (off the seat), the lead‐lag filter improves small amplitude response by momentarily overdriving the travel set point. This is useful when the actuator is large and equipped with accessories. As a result, any volume boosters that are present will be activated. The longer the lag time, the more pronounced the overdrive. Since the lead‐lag input filter is used to enhance the dynamic response of a control valve, filter parameters should be set after the tuning parameters have been established. When the valve is at its seat, the lead‐lag filter also has a boost function that sets the initial conditions of the filter artificially low so that small amplitude signal changes appear to be large signal changes to the filter. The boost function introduces a large spike that momentarily overdrives the instrument and activates any external volume boosters that may be present. The lead‐lag boost function is normally disabled except for those cases where the valve must respond to small command signals off the seat. By setting the lead/lag ratio in the opening and closing directions to 1.0, the boost function can be enabled without introducing lead‐lag dynamics in the active control region. See table 3‐2 for typical lead‐lag filter settings. Table 3‐2. Typical Lead/Lag Filter Settings for Instrument Level ODV Parameter Description Typical Value Lag Time First order time constant. A value of 0.0 will disable the lead‐lag filter. Opening Lead/Lag Ratio Initial response to the filter in the opening direction. 0.2 sec 2.0 Closing Lead/Lag Ratio Initial response to the filter in the closing direction. 2.0 Lead‐Lag Boost Initial conditions of the lead‐lag filter when the lower travel cutoff is active. Off 23 Instruction Manual Configuration D103605X012 January 2015 Tuning Field Communicator Configure > Manual Setup > Tuning (2‐2-4) Travel Tuning WARNING Changes to the tuning set may cause the valve/actuator assembly to stroke. To avoid personal injury and property damage caused by moving parts, keep hands, tools, and other objects away from the valve/actuator assembly. D Travel Tuning Set There are eleven tuning sets to choose from. Each tuning set provides a preselected value for the digital valve controller gain settings. Tuning set C provides the slowest response and M provides the fastest response. Table 3‐3 lists the proportional gain, velocity gain and minor loop feedback gain values for preselected tuning sets. Table 3‐3. Gain Values for Preselected Travel Tuning Sets Tuning Set Velocity Gain Minor Loop Feedback Gain C D E F G Proportional Gain 4.4 4.8 5.5 6.2 7.2 3.0 3.0 3.0 3.1 3.6 35 35 35 35 34 H I J K L M X (Expert) 8.4 9.7 11.3 13.1 15.5 18.0 User Adjusted 4.2 4.85 5.65 6.0 6.0 6.0 User Adjusted 31 27 23 18 12 12 User Adjusted In addition, you can specify Expert tuning and individually set the proportional gain, velocity gain, and minor loop feedback gain. Individually setting or changing any tuning parameter or running the Performance Tuner or Stabilize Optimize routint will automatically change the tuning set to X (expert). Note Use Expert tuning only if standard tuning has not achieved the desired results. Stabilize/Optimize or Performance Tuner may be used to achieve the desired results more rapidly than manual Expert tuning. Table 3‐4 provides tuning set selection guidelines for Fisher and Baumann actuators. These tuning sets are only recommended starting points. After you finish setting up and calibrating the instrument, you may have to select either a higher or lower tuning set to get the desired response. You can use the Performance Tuner to optimize tuning. 24 Instruction Manual Configuration D103605X012 January 2015 Table 3‐4. Actuator Information for Initial Setup Actuator Manufacturer Actuator Model 585C & 585CR 657 667 1051 & 1052 1061 Fisher Actuator Size Actuator Style 25 50 60 68, 80 100, 130 30 34, 40 45, 50 46, 60, 70, 76, & 80‐100 30 34, 40 45, 50 46, 60, 70, 76, & 80‐100 20, 30 33 40 60, 70 Piston Dbl w/ or w/o Spring. See actuator instruction manual and nameplate. 30 40 60 68, 80, 100, 130 Starting Tuning Set Travel Sensor Motion(2) Relay A or C(3) E I J L M User Specified Spring & Diaphragm H K L Away from the top of the instrument Spring & Diaphragm M H K L Towards the top of the instrument Spring & Diaphragm (Window‐mount) Piston Dbl w/o Spring M H I K M J K L M Away from the top of the instrument Depends upon pneumatic connections. See description for Travel Sensor Motion Mounting Style A 1066SR 20 27, 75 Piston Sgl w/Spring G L B C D Travel Sensor Motion Away from the top of the instrument Towards the top of the instrument Towards the top of the instrument Away from the top of the instrument 2052 1 2 3 Spring & Diaphragm (Window‐mount) H J M Away from the top of the instrument 3024C 30, 30E 34, 34E, 40, 40E 45, 45E Spring & Diaphragm E H K For Po operating mode (air opens): Towards the top of the instrument For Ps operating mode (air closes): Away from the top of the instrument X(1) 225 GX Air to Extend Air to Retract Baumann Rotary 750 Spring & Diaphragm K 1200 M 16 32 54 10 25 54 C E H E H J Spring & Diaphragm Air to Open Towards the top of the instrument Air to Close Away from the top of the instrument Towards the top of the instrument Away from the top of the instrument Specify NOTE: Refer to figure table 3‐6 for feedback connection (magnet assembly) information. 1. X = Expert Tuning. Proportional Gain = 4.2; Velocity Gain = 3.0; Minor Loop Feedback Gain = 18.0 2. Travel Sensor Motion in this instance refers to the motion of the magnet assembly. 3. Values shown are for Relay A and C. Reverse for Relay B. D Proportional Gain—the proportional gain for the travel control tuning set. Changing this parameter will also change the tuning set to Expert. D Velocity Gain—the velocity gain for the travel control tuning set. Changing this parameter will also change the tuning set to Expert. 25 Configuration January 2015 Instruction Manual D103605X012 D MLFB Gain—the minor loop feedback gain for the travel control tuning set. Changing this parameter will also change the tuning set to Expert. D Integral Enable—Yes or No. Enable the integral setting to improve static performance by correcting for error that exists between the travel target and actual travel. Travel Integral Control is enabled by default. D Integral Gain—Travel Integral Gain is the ratio of the change in output to the change in input, based on the control action in which the output is proportional to the time integral of the input. D Performance Tuner WARNING During performance tuning the valve may move, causing process fluid or pressure to be released. To avoid personal injury and property damage caused by the release of process fluid or pressure, isolate the valve from the process and equalize pressure on both sides of the valve or bleed off the process fluid. Note The Performance Tuner is available for instrument level AD, PD, and ODV, and can only be run while in Travel control mode. The Performance Tuner is used to determine digital valve controller tuning. It can be used with digital valve controllers mounted on most sliding‐stem and rotary actuators, including Fisher and other manufacturers' products. Moreover, because the performance tuner can detect internal instabilities before they become apparent in the travel response, it can generally optimize tuning more effectively than manual tuning. Typically, the performance tuner takes 3 to 5 minutes to tune an instrument, although tuning instruments mounted on larger actuators may take longer. D Stabilize/Optimize WARNING During Stabilize/Optimize the valve may move, causing process fluid or pressure to be released. To avoid personal injury and property damage caused by the release of process fluid or pressure, isolate the valve from the process and equalize pressure on both sides of the valve or bleed off the process fluid. Stabilize/Optimize permits you to adjust valve response by changing the digital valve controller tuning. During this routine the instrument must be out of service, however, the instrument will respond to setpoint changes. If the valve is unstable, select Decrease Response to stabilize valve operation. This selects the next lower tuning set (e.g., F to E). If the valve response is sluggish, select Increase Response to make the valve more responsive. This selects the next higher tuning set (e.g., F to G). If after selecting Decrease Response or Increase Response the valve travel overshoot is excessive, select Decrease Damping to select a damping value that allows more overshoot. Select Increase Damping to select a damping value that will decrease the overshoot. When finished, select done. 26 Instruction Manual Configuration D103605X012 January 2015 Pressure Tuning D Pressure Tuning Set There are twelve Pressure Tuning Sets to choose from. Each tuning set provides a preselected value for the digital valve controller gain settings. Tuning set C provides the slowest response and M provides the fastest response. Tuning set B is appropriate for controlling a pneumatic positioner. Table 3‐5 lists the proportional gain, pressure integrator gain and minor loop feedback gain values for preselected tuning sets. Table 3‐5. Gain Values for Preselected Pressure Tuning Sets Tuning Set B C D E F G H I J K L M X (Expert) Proportional Gain 0.5 2.2 2.4 2.8 3.1 3.6 4.2 4.8 5.6 6.6 7.8 9.0 User Adjusted Integrator Gain Minor Loop Feedback Gain 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 User Adjusted 35 35 35 35 35 34 31 27 23 18 12 12 User Adjusted In addition, you can specify Expert tuning and individually set the pressure proportional gain, pressure integrator gain, and pressure minor loop feedback gain. Individually setting or changing any tuning parameter will automatically change the tuning set to X (expert). Note Use Expert tuning only if standard tuning has not achieved the desired results. Stabilize/Optimize or Performance Tuner may be used to achieve the desired results more rapidly than Expert tuning. D Proportional Gain—the proportional gain for the pressure control tuning set. Changing this parameter will also change the tuning set to Expert. D MLFB Gain—the minor loop feedback gain for the pressure control tuning set. Changing this parameter will also change the tuning set to Expert. D Integral Enable—Yes or No. Enable the pressure integral setting to improve static performance by correcting for error that exists between the pressure target and actual pressure. Pressure Integral Control is disabled by default. D Integral Gain—Pressure Integral Gain (also called reset) is the gain factor applied to the time integral of the error signal between desired and actual pressure. Changing this parameter will also change the tuning set to Expert. Travel/Pressure Integral Settings D Integral Dead Zone—A window around the Primary Setpoint in which integral action is disabled. This feature is used to eliminate friction induced limit cycles around the Primary Setpoint when the integrator is active. The Dead Zone 27 Instruction Manual Configuration D103605X012 January 2015 is configurable from 0% to 2%, corresponding to a symmetric window from 0% to +/-2% around the Primary Setpoint. Default value is 0.25%. D Integrator Limit—The Integrator Limit provides an upper limit to the integrator output. The high limit is configurable from 0 to 100% of the I/P drive signal. Valve and Actuator Field Communicator Configure > Manual Setup > Valve and Actuator (2‐2‐5) Valve Style—Enter the valve style, rotary or sliding‐stem Actuator Style—Enter the actuator style, spring and diaphragm, piston double‐acting without spring, piston single‐acting with spring, or piston double‐acting with spring. Feedback Connection—Refer to table 3‐6 for Feedback Connection options. Choose the assembly that matches the actuator travel range. Note As a general rule, do not use less than 60% of the magnet assembly travel range for full travel measurement. Performance will decrease as the assembly is increasingly subranged. The linear magnet assemblies have a valid travel range indicated by arrows molded into the piece. This means that the hall sensor (on the back of the DVC6200 housing) has to remain within this range throughout the entire valve travel. The linear magnet assemblies are symmetrical. Either end may be up. Table 3‐6. Feedback Connection Options Magnet Assembly Travel Range mm Inch Degrees SStem #7 4.2-7 0.17-0.28 - SStem #19 8-19 0.32-0.75 - SStem #25 20-25 0.76-1.00 - SStem #38 26-38 1.01-1.50 - SStem #50 39-50 1.51-2.00 - SStem #110 51-110 2.01-4.125 - SStem #210 110-210 4.125-8.25 SStem #1 Roller > 210 > 8.25 60-90_ RShaft Window #1 - - 60-90_ RShaft Window #2 - - 60-90_ RShaft End Mount - - 60-90_ Relay Type—There are three categories of relays that result in combinations from which to select.  Relay Type: The relay type is printed on the label affixed to the relay body. A = double‐acting or single‐acting B = single‐acting, reverse C= single‐acting, direct  Special App: This is used in single‐acting applications where the “unused” output port is configured to read the pressure downstream of a solenoid valve.  Lo Bleed: The label affixed to the relay body indicates whether it is a low bleed version. 28 Instruction Manual Configuration D103605X012 January 2015 Zero Power Condition—The position of the valve (open or closed) when the electrical power to the instrument is removed. Zero Power Condition (ZPC) is determined by relay type, as shown in figure 3‐3. Figure 3‐3. Zero Power Condition A B Relay Type Loss of Electrical Power Single‐Acting Direct (Relay A or C) Port A pressure to zero. Double‐Acting (Relay A) Port A pressure to zero. Port B pressure to full supply. Single‐Acting Reverse (Relay B) Port B pressure to full supply. Travel Sensor Motion WARNING If you answer YES to the prompt for permission to move the valve when determining travel sensor motion, the instrument will move the valve through a significant portion of its travel range. To avoid personal injury and property damage caused by the release of process fluid or pressure, isolate the valve from the process and equalize pressure on both sides of the valve or bleed off the process fluid. Select Clockwise/Toward Bottom, or Counterclockwise/Toward Top. Travel Sensor Motion establishes the proper travel sensor rotation. For quarter‐turn actuators determine rotation by viewing the rotation of the magnet assembly from the back of the instrument. Note Travel Sensor Motion in this instance refers to the motion of the magnet assembly. Note that the magnet assembly may be referred to as a magnetic array in user interface tools. D For instruments with Relay A and C: If increasing air pressure at output A causes the magnet assembly to move down or the rotary shaft to turn clockwise, enter CW/To Bottom Inst. If it causes the magnet assembly to move up, or the rotary shaft to turn counterclockwise, enter CCW/To Top Inst. D For instruments with Relay B: If decreasing air pressure at output B causes the magnet assembly to down, or the rotary shaft to turn clockwise, enter CW/To Bottom Inst. If it causes the magnet assembly to move up, or the rotary shaft to turn counterclockwise, enter CCW/To Top Inst. Maximum Supply Pressure Enter the maximum supply pressure that is required to fully stroke the valve. 29 Instruction Manual Configuration D103605X012 January 2015 Partial Stroke Test (PST) (Instrument Level ODV only) Field Communicator Configure > Manual Setup > Partial Stroke (2-2-6) Note Partial Stroke is only available for instrument level ODV. Partial Stroke Test (PST) D PST Pressure Limit— This defines the actuator pressure at which a partial stroke test will abort. This prevents the DVC6200 from exhausting (or building) excessive pressure to the actuator in an attempt to move a stuck valve. During Device Setup or Auto Travel Calibration, the Partial Stroke Pressure Limit will be set automatically as follows: Single Acting Actuators - For those actuators that exhaust pressure from the partial test start point, the Pressure Limit will be a minimum value. For those actuators that build pressure from the partial test start point, the Pressure Limit will be a maximum value. Double Acting Actuators - The Pressure Limit will be set to a negative value for actuators where the partial stroke start point is opposite of the Zero Power Condition (e.g., Partial Stroke Start Point = Open and Zero Power Condition = Closed) and to a positive valve for actuators where the partial stroke start point is the same as the Zero Power Condition. The pressure signal used to determine this parameter depends on relay type and is summarized below. Relay Type A or C B B Special App. C Special App. Pressure Signal Port A - Port B Port B - Port A Port B Port A To manually set the partial stroke pressure limit, you must examine current partial stroke test results using ValveLink software. The following steps will guide you through the process: 1. Connect the DVC6200 to a system running ValveLink software. 2. Disable the following parameters: D Travel Deviation Alert - set to 125%. D End Point Pressure Control - disable D Partial Stroke Pressure Limit - disable by setting the appropriate value shown in table 3‐7. 30 Instruction Manual Configuration D103605X012 January 2015 Table 3‐7. Values for Disabling Partial Stroke Pressure Limit Actuator Type Relay Type Zero Power Condition Closed A or C Open Single Acting Closed B Open Closed Double Acting A Open Partial Stroke Start Point Partial Stroke Pressure Limit (Disabled) Open 0.0 Closed Psupply Open Psupply Closed 0.0 Open Psupply Closed 0.0 Open 0.0 Closed Psupply Open -Psupply Closed Psupply Open Psupply Closed -Psupply 3. Run a partial stroke test. 4. Select the Press/Time radio button on the partial stroke graph (refer to the example in figure 3‐4, bottom plot). If the actuator pressure starts high and moves low, find the minimum actuator pressure (Pmin). If the actuator pressure starts low and moves high, find the maximum actuator pressure (Pmax). Double­acting actuators will display differential pressure. Use table 3‐8 to estimate the partial stroke pressure limit. Table 3‐8. Estimates for Partial Stroke Pressure Limits Actuator Style Relay Type Zero Power Condition Closed A or C Open Spring and Diaphragm Closed B Open Closed A or C Open Single Acting Piston Closed B Open Closed Double Acting Piston A Open PST Starting Point Partial Stroke Pressure Limit(1) Open Pmin - 0.25 * (Bench Set High - Bench Set Low) Closed Pmax + 0.25 * (Bench Set High - Bench Set Low) Open Pmax + 0.25 * (Bench Set High - Bench Set Low) Closed Pmin - 0.25 * (Bench Set High - Bench Set Low) Open Pmax + 0.25 * (Bench Set High - Bench Set Low) Closed Pmin - 0.25 * (Bench Set High - Bench Set Low) Open Pmin - 0.25 * (Bench Set High - Bench Set Low) Closed Pmax + 0.25 * (Bench Set High - Bench Set Low) Open 0.5 * Pmin Closed Pmax + 0.5 * (Psupply - Pmax) Open Pmax + 0.5 * (Psupply - Pmax) Closed 0.5 * Pmin Open Pmax + 0.5 * (Psupply - Pmax) Closed 0.5 * Pmin Open 0.5 * Pmin Closed Pmax + 0.5 * (Psupply - Pmax) Open Pmin - 0.5 * (Psupply + Pmin) Closed Pmax + 0.5 * (Psupply - Pmax) Open Pmax + 0.5 * (Psupply - Pmax) Closed Pmin - 0.5 * (Psupply + Pmin) 5. Enable the parameters that were previously disabled: D Travel Deviation Alert - set to 1.5x the maximum travel deviation between travel set point and travel. D End Point Pressure Control - enable D Partial Stroke Pressure Limit - calculate the value using table 3‐8. 31 Instruction Manual Configuration D103605X012 January 2015 PST Enable—Yes or No. This enables or disables the Partial Stroke Test. PST Start Point—Valve Open or Valve Closed. This defines the travel stop that the valve needs to be at before a partial stroke test can be initiated. This also defines the travel stop for end point pressure control. Setting this value to Not Configured will disable partial stroke tests and end point pressure control. PST Variables—Follow the prompts on the Field Communicator display to enter or view information for following PST Variables: D Max Travel Movement— This is the percentage of total span that the valve moves away from its normal operating state towards its tripped state during the test. The default value is 10%. D Test Speed—This is the rate at which the valve will move during the test. The default value is 0.25%/second. D Pause Time—This is the pause time between the up and down strokes of the test. The default value is 5 seconds. TVL SET POINT, TRAVEL (%) Figure 3‐4. Example Time Series Plots of Travel Set Point, Travel, Error, and Actuator Pressure TEST START POINT ACTUAL TRACE FROM TEST (TYPICAL) MAX. TRAVEL PERCENT (%) TEST SPEED (%/SEC) TEST PAUSE TIME (SEC) ERROR (%) TIME (SEC) TRAVEL DEVIATION ALERT POINT ACTUAL TRACE FROM TEST (TYPICAL) MAXIMUM DEVIATION PRESSURE (%) TIME (SEC) ACTUAL TRACE FROM TEST (TYPICAL) MINIMUM PRESSURE (Pmin) PARTIAL STROKE PRESSURE LIMIT TIME (SEC) 32 Instruction Manual D103605X012 Configuration January 2015 Outputs Field Communicator Configure > Manual Setup > Outputs (2-2-6) HC, AD, PD or (2-2-7) ODV Output Terminal Configuration Note These menu items are only available on units that have the optional 4­20 mA position transmitter or switch hardware installed. D Output Terminal Enable—If using the optional output terminal for a Position Transmitter or Switch output, this must be Enabled. D Function—The output terminals can be configured as one of the following: Transmitter - 4­20mA output that represents 0­100% of the calibrated valve travel. Limit Switch - Discrete switch (1A max) that trips at a configurable point within 0­100% of calibrated valve travel. Alert Switch - Discrete switch (1A max) that trips based on a configurable device alert. D Fail Signal—Should the output circuit fail to operate properly, the output will attempt to drive to a known state. Depending on the nature of the failure, the circuit may or may not be able to achieve this fail state. When configured as a transmitter, the output can be configured to drive high (22.5 mA) or low (3.6 mA). When configured as a switch, the output can be configured to drive Closed or Open. Note On loss of positioner power, the switch circuit will always go to the open state. However, on loss of positioner power, the transmitter output will continue to operate as long as the transmitter circuit is still powered and functioning. Switch Configuration Note Switch Configuration is only available on units that have the optional 4­20 mA position transmitter or switch hardware installed. D Limit Switch Trip Point—When the function is configured as a Limit Switch, this defines the threshold for the limit switch in percent of calibrated travel. D Alert Switch Source—When the function is configured as a Alert Switch, this determines which alert will activate the switch. The alert choices are: Travel Deviation or Pressure Fallback. D Switch Closed—This configures the action of the switch. The choices are: Below Trip Point / Alert Not Active or Above Trip Point / Alert Active. 33 Instruction Manual Configuration D103605X012 January 2015 HART Variable Assignments Instrument variables can be reported via four different HART variable assignments. The Primary Variable is always configured as Analog Input. However, the remaining three variables have additional options as listed below. Primary Variable (PV) Analog Input Secondary Variable (SV) Travel, Travel Setpoint, Pressure A, Pressure B, Pressure A­B, Supply Pressure, Drive Signal, or Analog Input Tertiary Variable (TV) Travel, Travel Setpoint, Pressure A, Pressure B, Pressure A­B, Supply Pressure, Drive Signal, or Analog Input Quaternary Variable (QV) Travel, Travel Setpoint, Pressure A, Pressure B, Pressure A­B, Supply Pressure, Drive Signal, or Analog Input Transmitter Output Note Transmitter Output is only available on units that have the optional 4­20 mA position transmitter or switch hardware installed. This configures the relationship between the valve travel and the position transmitter output signal. There are two choices; 4mA = Valve Closed or 4mA = Valve Open. Burst Mode Burst mode provides continuous communication from the digital valve controller. Burst mode applies only to the transmission of burst mode data (HART Variable Assignments) and does not affect the way other data is accessed. Burst mode is only available in devices configured as HART Universal Revision 5. D Burst Enable—This turns on or off the burst mode. D Burst Command—This defines which HART command is configured for burst reporting. There are three options to choose from. When using a Tri­Loop, select the third option. - Analog Input (Command 1) - Loop Current / Travel (Command 2) - Loop Current / PV / SV / TV / QV (Command 3) Note Access to information in the instrument is normally obtained through the poll/response of HART communication. The Field Communicator or the control system may request any of the information that is normally available, even while the instrument is in burst mode. Between each burst mode transmission sent by the instrument, a short pause allows the Field Communicator or control system to initiate a request. The instrument receives the request, processes the response message, and then continues “bursting” the burst mode data. Burst mode will be automatically disabled during diagnostics tests such as Valve Signature. Note If the instrument is configured to operate in pressure control mode, or detects an invalid travel sensor reading, the Travel variable will report pressure in percent of bench set range. 34 Instruction Manual Configuration D103605X012 January 2015 Alert Setup Field Communicator Configure > Alert Setup (2‐3) An alert is a notification that the instrument has detected a problem. A shutdown is an action that the instrument takes to drive the air output to the Zero Power Condition as per figure 3‐3. Some alerts can be configured to shutdown the instrument. Refer to table 3‐9 for default alert and shutdown settings. Alerts may be enabled or disabled with the instrument In Service, Out of Service, Protected, or Not Protected. However, the instrument must be Not Protected to enable or disable a shutdown. Alerts are not processed when a diagnostic is in progress. If shutdown is enabled, and the alert is active, the instrument will latch in the shutdown state until power to the instrument is cycled and the alert has cleared. While in the shutdown condition, HART communication will continue if the instrument remains powered. For a detailed explanation of the alerts and the recommended actions, refer to Section 5. Table 3‐9. Default Alert and Shutdown Settings ALERT DEFAULT ALERT SETTING DEFAULT SHUTDOWN SETTING Travel Sensor Failure Enabled Disabled Temperature Sensor Failure Enabled Disabled Minor Loop Sensor Failure Enabled Disabled Pressure Sensor Failure Enabled Disabled Drive Current Failure Enabled Disabled Critical NVM Failure Enabled Disabled Non-Critical NVM Failure Enabled Disabled Flash Integrity Failure Enabled Disabled Reference Voltage Failure Enabled Disabled Drive Signal Out of Range Enabled Not Available Supply Pressure Low(1) Enabled Not Available Travel Deviation Enabled Not Available Pressure Fallback Active(1) Enabled Not Available High Travel Disabled Not Available Low Travel Disabled Not Available High-High Travel Disabled Not Available Low-Low Travel Disabled Not Available Travel Limit/Cutoff High Disabled Not Available Travel Limit/Cutoff Low Disabled Not Available Integrator Saturated High Disabled Not Available Integrator Saturated Low Disabled Not Available Cycle Count High Disabled Not Available Travel Accumulator High Disabled Not Available Output Circuit Communication Failure Disabled Not Available Alert Record Not Empty Disabled Not Available Alert Record Full Disabled Not Available Instrument Time is Approximate Disabled Not Available 1. Instrument level AD, PD, or ODV only. 35 Instruction Manual Configuration D103605X012 January 2015 Change to HART 5 / Change to HART 7 Field Communicator Service Tool > Maintenance > Change to HART 5 / Change to HART 7 (3-5-3) HC or (3-5-4) AD, PD or (3-5-5) ODV Note This procedure must never be done while the valve is in service and controlling the process. Depending on the control system or asset management system attached, complete system reset may be required to reestablish HART communication. Consult the system documentation for further information. This procedure changes the instrument from HART Universal Revision 5 to HART Universal Revision 7 (or vice versa). Before proceeding, verify that your systems are prepared to support HART Universal Revision 7 devices. Follow the prompts on the Field Communicator display. 36 Instruction Manual Calibration D103605X012 January 2015 Section 4 Calibration 44 Calibration Overview When a DVC6200 digital valve controller is ordered as part of a control valve assembly, the factory mounts the digital valve controller on the actuator and connects the necessary tubing, then sets up and calibrates the controller. For digital valve controllers that are ordered separately, recalibration of the analog input or pressure sensors generally is unnecessary. However, after mounting on an actuator, perform the initial setup then calibrate travel by selecting Configure > Calibration > Travel Calibration > Auto Calibration. For more detailed calibration information, refer to the following calibration procedures. Field Communicator Configure > Calibration (2-4) Auto Travel Calibration - see page 38 Manual Travel Calibration - see page 39 Pushbutton Calibration - see page 40 Pressure Sensor Calibration - see page 41 Analog Input Calibration - see page 42 Relay Adjustment - see page 43 PST Calibration (ODV Instrument Level only) - see page 45 Note The Instrument Mode must be Out Of Service and the Protection set to None before the instrument can be calibrated. If you are operating in burst mode, we recommend that you disable burst before continuing with calibration. Once calibration is complete, burst mode may then be turned back on. WARNING During calibration the valve will move full stroke. To avoid personal injury and property damage caused by the release of pressure or process fluid, isolate the valve from the process and equalize pressure on both sides of the valve or bleed off the process fluid. 37 Instruction Manual Calibration D103605X012 January 2015 Travel Calibration If a double‐acting relay is used, you will be prompted to run the relay adjustment when auto or manual calibration is selected. Select Yes to adjust the relay, select No to proceed with calibration. For additional information, refer to Relay Adjustment on page 43. Auto Calibration 1. The auto calibration procedure is automatic. It is completed when the Calibration menu appears. During calibration, the instrument seeks the high and low end points and the minor loop feedback (MLFB) and output bias. By searching for the end points, the instrument establishes the limits of physical travel, i.e. the actual travel 0 and 100% positions. This also determines how far the relay beam swings to calibrate the sensitivity of the MLFB sensor. 2. Place the instrument In Service and verify that the travel properly tracks the current source. If the unit does not calibrate, refer to table 4‐1 for error messages and possible remedies. Table 4‐1. Auto Calibrate Travel Error Messages Error Message Possible Problem and Remedy Power failure occurred during Auto Calib The analog input signal to the instrument must be greater than 3.8 mA. Adjust the current output from the control system or the current source to provide at least 4.0 mA. Auto Calib did not complete within the time limit. The problem may be one or the other of the following: 1. The tuning set selected is too low and the valve does not reach an end point in the allotted time. Select Manual Setup > Tuning > Travel Tuning > Stabilize/Optimize then Increase Response (selects next higher tuning set). 2. The tuning set selected is too high, valve operation is unstable and does not stay at an end point for the allotted time. Select Manual Setup > Tuning > Travel Tuning > Stabilize/Optimize then Decrease Response (selects next lower tuning set). Insufficient travel Prior to receiving this message, did the instrument output go from zero to full supply? If not, verify instrument supply pressure by referring to the specifications in the appropriate actuator instruction manual. If supply pressure is correct, check instrument pneumatic components (I/P converter and relay). If the instrument output did go from zero to full supply prior to receiving this message, then verify proper mounting by referring to the appropriate mounting procedure in the Installation section and checking the magnet array for proper alignment. Drive signal exceed low limit; check supply pressure 1. Check supply pressure (reverse‐acting relay) 2. Friction is too high. Drive signal exceed high limit; check supply pressure 1. Check supply pressure (direct‐acting relay) 2. Friction is too high 38 Instruction Manual D103605X012 Calibration January 2015 Manual Calibration Two procedures are available to manually calibrate travel: D Analog Adjust— This procedure is used when you can manually change the 4-20 mA current source to move the valve. D Digital Adjust— This procedure is used when the 4-20 mA current source cannot be manually changed. Analog Calibration Adjust Connect a variable current source to the instrument LOOP + and LOOP - terminals. The current source should be capable of generating 4 to 20 mA. Follow the prompts on the Field Communicator display to calibrate the instrument's travel in percent. Note 0% Travel = Valve Closed 100% Travel = Valve Open 1. Adjust the input current until the valve is near mid‐travel. Press OK. Note In steps 2 through 7 the accuracy of the current source adjustment affects the position accuracy. 2. 3. 4. 5. 6. 7. 8. Adjust the current source until the valve is at 0% travel, then press OK. Adjust the current source until the valve is at 100% travel, then press OK. Adjust the current source until the valve is at 0% travel, then press OK. Adjust the current source until the valve is at 100% travel, then press OK. Adjust the current source until the valve is at 5% travel, then press OK. Adjust the current source until the valve is at 95% travel, then press OK. Place the instrument In Service and verify that the travel properly tracks the current source. Digital Calibration Adjust Connect a variable current source to the instrument LOOP + and LOOP - terminals. The current source should be set between 4 and 20 mA. Follow the prompts on the Field Communicator display to calibrate the instrument's travel in percent. 1. Adjust the input current until the valve is near mid‐travel. Press OK. Note 0% Travel = Valve Closed 100% Travel = Valve Open 39 Calibration Instruction Manual January 2015 D103605X012 2. From the adjustment menu, select the direction and size of change required to set the travel at 0%. Selecting large, medium, and small adjustments causes changes of approximately 10.0%, 1.0%, and 0.1%, respectively. If another adjustment is required, repeat step 2. Otherwise, select Done and go to step 3. 3. From the adjustment menu, select the direction and size of change required to set the travel to 100%. If another adjustment is required, repeat step 3. Otherwise, select Done and go to step 4. 4. From the adjustment menu, select the direction and size of change required to set the travel at 0%. If another adjustment is required, repeat step 4. Otherwise, select Done and go to step 5. 5. From the adjustment menu, select the direction and size of change required to set the travel to 100%. If another adjustment is required, repeat step 5. Otherwise, select Done and go to step 6. 6. From the adjustment menu, select the direction and size of change required to set the travel to 5%. If another adjustment is required, repeat step 6. Otherwise, select Done and go to step 7. 7. From the adjustment menu, select the direction and size of change required to set the travel to 95%. If another adjustment is required, repeat step 7. Otherwise, select Done and go to step 8. 8. Place the instrument In Service and verify that the travel properly tracks the current source. Pushbutton Calibration A pushbutton near the wiring terminals in the terminal box provides a quick means to autocalibrate the instrument. The button must be pressed for 3 to 10 seconds. Autocalibration will move the valve through the full range of travel whether the Instrument Mode is In Service or Out of Service. However, if the Write Protection is Protected, this button will not be active. To abort, press the button again for 1 second. The calibration button is disabled by default. To enable it, go to Manual Setup > Instrument > Calibration Button. Note Pressure range (used for Pressure Fallback) is not recalibrated during this procedure. This calibration procedure is recommended whenever the I/P converter or pneumatic relay is replaced. Do not use the pushbutton calibration for initial calibration when mounting the instrument on an actuator, or if the printed wiring board assembly was replaced. If you suspect calibration has changed due to drift, first perform a Valve Signature diagnostic test using ValveLink software to capture the as­found data for future root cause analysis. 40 Instruction Manual D103605X012 Calibration January 2015 Sensor Calibration Pressure Sensors Note The pressure sensor is calibrated at the factory and should not require calibration. Output Pressure Sensor To calibrate the output pressure sensor, connect an external reference gauge to the output being calibrated. The gauge should be capable of measuring maximum instrument supply pressure. Depending upon the sensor you wish to calibrate, select either Output A Sensor or Output B Sensor. Follow the prompts on the Field Communicator display to calibrate the instrument's output pressure sensor. 1. Adjust the supply pressure regulator to the maximum instrument supply pressure. Press OK. 2. The instrument reduces the output pressure to 0. The following message appears. Use the Increase and Decrease selections until the displayed pressure matches the output x pressure. Press OK when you have read the message. 3. The value of the output pressure appears on the display. Press OK to display the adjustment menu. 4. From the adjustment menu, select the direction and size of adjustment to the displayed value. Selecting large, medium, and small adjustments causes changes of approximately 3.0 psi/0.207 bar/20.7 kPa, 0.30 psi/0.0207 bar/2.07 kPa, and 0.03 psi/0.00207 bar/0.207 kPa, respectively. If the displayed value does not match the output pressure, press OK, then repeat this step (step 4) to further adjust the displayed value. When the displayed value matches the output pressure, select Done and go to step 5. 5. The instrument sets the output pressure to full supply. The following message appears. Use the Increase and Decrease selections until the displayed pressure matches the output x pressure. Press OK when you have read the message. 6. The value of the output pressure appears on the display. Press OK to display the adjustment menu. 7. From the adjustment menu, select the direction and size of adjustment to the displayed value. If the displayed value does not match the output pressure, press OK, then repeat this step (step 7) to further adjust the displayed value. When the displayed value matches the output pressure, select Done and go to step 8. 8. Place the instrument In Service and verify that the displayed pressure matches the measured output pressure. 41 Instruction Manual Calibration D103605X012 January 2015 Supply Pressure Sensor Note Supply Pressure Sensor Calibration is not available for instrument level HC. To calibrate the supply pressure sensor, connect an external reference gauge to the output side of the supply regulator. The gauge should be capable of measuring maximum instrument supply pressure. Follow the prompts on the Field Communicator display to calibrate the instrument's supply pressure sensor. 1. Select a) Zero Only, or b) Zero and Span (gauge required). a. If Zero Only calibration is selected, adjust the supply pressure regulator to remove supply pressure from the instrument. Press OK. Once calibration is complete, go to step 5. b. If Zero and Span calibration is selected, adjust the supply pressure regulator to remove supply pressure from the instrument. Press OK. Adjust the supply regulator to the maximum instrument supply pressure. Press OK. Proceed with step 2. 2. The following message appears: Use the Increase and Decrease selections until the displayed pressure matches the supply pressure. Press OK when you have read this message. 3. The value of the pressure appears on the display. 4. From the adjustment menu, select the direction and size of adjustment to the displayed value. Selecting large, medium, and small adjustments causes changes of approximately 3.0 psi/0.207 bar/20.7 kPa, 0.30 psi/0.0207 bar/2.07 kPa, and 0.03 psi/0.00207 bar/0.207 kPa, respectively. Adjust the displayed value until it matches the supply pressure, select Done and go to step 5. 5. Place the instrument In Service and verify that the displayed pressure matches the measured supply pressure. Analog Input Calibration To calibrate the analog input sensor, connect a variable current source to the instrument LOOP+ and LOOP- terminals. The current source should be capable of generating an output of 4 to 20 mA. Follow the prompts on the Field Communicator display to calibrate the analog input sensor. 1. Set the current source to the target value shown on the display. The target value is the Input Range Low value. Press OK. 2. The following message appears: Use the Increase and Decrease selections until the displayed current matches the target. 42 Instruction Manual D103605X012 Calibration January 2015 Press OK when you have read this message. 3. The value of the Analog Input appears on the display. Press OK to display the adjustment menu. 4. From the adjustment menu, select the direction and size of adjustment to the displayed value. Selecting large, medium, and small adjustments causes changes of approximately 0.4 mA, 0.04 mA, and 0.004 mA, respectively. If the displayed value does not match the current source, press OK, then repeat this step (step 4) to further adjust the displayed value. When the displayed value matches the current source, select Done and go to step 5. 5. Set the current source to the target value shown on the display. The target value is the Input Range High value. Press OK. 6. The following message appears: Use the Increase and Decrease selections until the displayed current matches the target. Press OK when you have read this message. 7. The value of the Analog Input appears on the display. Press OK to display the adjustment menu. 8. From the adjustment menu, select the direction and size of adjustment to the displayed value. If the displayed value does not match the current source, press OK, then repeat this step (step 8) to further adjust the displayed value. When the displayed value matches the current source, select Done and go to step 9. 9. Place the instrument In Service and verify that the analog input displayed matches the current source. Relay Adjustment Before beginning travel calibration, check the relay adjustment. Replace the digital valve controller cover when finished. Note Relay B and C are not user‐adjustable. Double‐Acting Relay The double‐acting relay is designated by “Relay A” on a label affixed to the relay itself. For double‐acting actuators, the valve must be near mid‐travel to properly adjust the relay. The Field Communicator will automatically position the valve when Relay Adjust is selected. Rotate the adjustment disc, shown in figure 4‐1, until the output pressure displayed on the Field Communicator is between 50 and 70% of supply pressure. This adjustment is very sensitive. Be sure to allow the pressure reading to stabilize before making another adjustment (stabilization may take up to 30 seconds or more for large actuators). If the low bleed relay option has been ordered stabilization may take approximately two minutes longer than the standard relay. 43 Instruction Manual Calibration D103605X012 January 2015 Figure 4‐1. Relay A Adjustment (Shroud Removed for Clarity) FOR SINGLE‐ACTING DIRECT RELAYS: ROTATE ADJUSTMENT DISC IN THIS DIRECTION UNTIL IT CONTACTS THE BEAM FOR DOUBLE‐ACTING RELAYS: ROTATE ADJUSTMENT DISC IN THIS DIRECTION TO DECREASE OUTPUT PRESSURE ADJUSTMENT DISC FOR DOUBLE‐ACTING RELAYS: ROTATE ADJUSTMENT DISC IN THIS DIRECTION TO INCREASE OUTPUT PRESSURE W9034 Relay A may also be adjusted for use in single‐acting‐ direct applications. Rotate the adjustment disc as shown in figure 4‐1 for single‐acting direct operation. CAUTION Care should be taken during relay adjustment as the adjustment disc may disengage if rotated too far. Single‐Acting Relays WARNING For Instrument Level ODV only: If the unused port is monitoring pressure, ensure that the pressure source conforms to ISA Standard 7.0.01 and does not exceed the pressure supplied to the instrument. Failure to do so could result in personal injury or property damage caused by loss of process control. Single‐Acting Direct Relay The single‐acting direct relay is designated by “Relay C” on a label affixed to the relay itself. Relay C requires no adjustment. Single‐Acting Reverse Relay The single‐acting reverse relay is designated by “Relay B” on a label affixed to the relay itself. Relay B is calibrated at the factory and requires no further adjustment. 44 Instruction Manual D103605X012 Calibration January 2015 PST Calibration (ODV Instrument Level only) This procedure permits you to run the Partial Stroke Calibration, which enables the Partial Stroke Test. It establishes values for Partial Stroke Pressure Limit, Pressure Set Point and Pressure Saturation Time for End Point Pressure Control, Travel Deviation Alert Point and Travel Deviation Time. The Partial Stroke Calibration also sets default values for max travel movement, test speed, and test pause time. Note You must take the instrument out of service before running Partial Stroke Calibration. Ensure that the instrument is put back in service after the completing the calibration procedure. 45 Calibration January 2015 46 Instruction Manual D103605X012 Instruction Manual Device Information, Diagnostics, and Alerts D103605X012 January 2015 Section 5 Device Information, Diagnostics, and Alerts55 Overview Field Communicator Overview (1) Status & Primary Purpose Variables The overview section provides basic information about the current state of the instrument and gives you access to the current values of: D Alert Status D Communication Status D Instrument Mode (In/Out of Service) D Analog Input D Setpoint D Travel D Supply Pressure (not available in Instrument Level HC) D Actuator Pressure(s) D Travel/Pressure Control Configuration Device Information Device Information provides details about the instrument construction including: D Tag Name D Instrument Model Number D Instrument Level (see table 5‐1) D Device ID (unique number used to prevent the instrument from accepting commands intended for other instruments) D Serial Numbers D Firmware, DD, and Hardware Revisions D HART Universal Revision D Write Protection (provides a procedure to enable/disable) Table 5‐1. Functions Available for Instrument Level Instrument Level Functions Available HC Communicates with the Field Communicator and ValveLink software. In addition, HC provides: travel cutoffs and limits, minimum opening and closing times, input characterization (linear, equal percentage, quick opening, and custom), trending with ValveLink Solo, and the following alerts: travel deviation; travel alert high, low, high high, and low low; drive signal; cycle counter; and travel accumulation. AD Includes all functions listed above plus (with ValveLink software) all offline diagnostic tests (dynamic error band, drive signal, step response, and valve signature) plus online trending PD Includes all functions listed above plus all Performance Diagnostics online/in‐service valve testing (valve friction, electronics, and mechanical condition) ODV Includes all functions listed above plus partial stroke test and lead/lag set point filter 47 Device Information, Diagnostics, and Alerts Instruction Manual D103605X012 January 2015 Service Tools Field Communicator Service Tools (3) Device Status Instrument alerts, when enabled, detect many operational and performance issues that may be of interest. If there are no alerts currently active, this display will be empty. Alert Record The DVC6200 will store 20 alerts. Once the alert record is full, no additional alerts will be stored until the record is cleared. Below is a list of the alerts that can be detected by the instrument. To enable or disable the alerts, navigate to Configure > Alert Setup. D Offline/Failed Alert—This alert is active if a shutdown alert has put the device in a failed state and is therefore not controlling the input. Press Enter to view the alert(s) that caused the shutdown. Electronics D Drive Current Failure—This alert is active when the drive current to the I/P converter is not flowing as expected. If this alert occurs, check the connection between the I/P converter and the printed wiring board assembly. Try removing the I/P converter and re­installing it. If the alert does not clear, replace the I/P converter or the printed wiring board assembly. D Drive Signal Alert—This alert monitors the drive signal and calibrated travel. If one of the following conditions exists for more than 20 seconds, the alert is set. For the case where Zero Power Condition is defined as closed:     Drive Signal < 10% and Calibrated Travel > 3%     Drive Signal > 90% and Calibrated Travel < 97% For the case where Zero Power Condition is defined as open:     Drive Signal < 10% and Calibrated Travel < 97%     Drive Signal > 90% and Calibrated Travel > 3% D Non­Critical NVM Alert—This alert is active if there is a failure associated with NVM (non­volatile memory) that is not critical for instrument operation. If this alert is active, restart the instrument. If the alert persists, replace the printed wiring board assembly. D Critical NVM Alert—This alert is active if there is a failure associated with NVM that is critical for instrument operation. If this alert is active, restart the instrument. If the alert persists, replace the printed wiring board assembly. D Flash Integrity Failure—This alert is active if there is a failure associated with flash ROM (read only memory). If this alert is active, restart the instrument. If the alert persists, replace the printed wiring board assembly. D Reference Voltage Failure—This alert is active if there is a failure associated with the internal voltage reference. If this alert is active, replace the printed wiring board assembly. 48 Instruction Manual D103605X012 Device Information, Diagnostics, and Alerts January 2015 D Variable Out of Range—This alert is active if one or more of the measured analog sensor readings (loop current, pressure, temperature, or travel) is saturated or reading out of its configured range. The condition may be due to improper configuration or physical setup and not be due to a sensor malfunction. D Field Device Malfunction—This alert is active if the pressure, position, or temperature sensors are providing invalid readings. D Internal Sensor Out of Limits—This alert is active if there is a problem with either the pressure sensor or the printed wiring board assembly. D Travel Sensor Alert—This alert is active if the sensed travel is outside the range of ­25.0 to 125.0% of calibrated travel. If this alert is active, check the instrument mounting. Also, check that the electrical connection from the travel sensor is properly plugged into the printed wiring board assembly. After restarting the instrument, if the alert persists, troubleshoot the printed wiring board assembly or travel sensor. D Temperature Sensor Alert—This alert is active when the instrument temperature sensor fails, or the sensor reading is outside of the range of ­60 to 100°C (­76 to 212°F). The temperature reading is used internally for temperature compensation of inputs. If this alert is active, restart the instrument. If the alert persists, replace the printed wiring board assembly. D Pressure Sensor Alert—This alert is active if any of the 3 pressure sensor readings are outside the range of ­24.0 to 125.0% of the calibrated pressure for more than 60 seconds. If this alert is active, check the instrument supply pressure, ensure the printed wiring board assembly is properly mounted onto the module base assembly, and ensure the pressure sensor o­rings are properly installed. If the alert persists after restarting the instrument, replace the printed wiring board assembly. D Minor Loop Sensor Alert—This alert is active if the pneumatic relay position reading is outside the valid range. If the alert persists, replace the printed wiring board. D Loop Current Validation Alert—This alert is active if the loop current is significantly out of range, or if there is a problem with the analog circuit electronics. If this alert is active, restart the instrument with the loop current verified to be in the 4­20 mA range. If the alert persists, replace the printed wiring board. Note If the control system is known to output current 24 mA or above, Shutdown on Loop Current Validation should not be enabled. D Output Circuit Communication Failure—This alert is active if the output circuit is not responding. If configured as a position transmitter output, first make sure the transmitter circuit is powered. If the alert persists, make sure the DIP switch on the main electronics matches the configuration of the OUT terminals. If the alert is still active, replace the main electronics. D Instrument Time is Approximate Alert—This alert is active if the instrument has been powered down since the last time the instrument clock was set. To clear the alert, reset the instrument time. Pressure D Supply Pressure Alert—This alert is active if the supply pressure falls below the supply pressure alert point. Note The Supply Pressure Lo alert is available for instrument level AD, PD, and ODV. 49 Device Information, Diagnostics, and Alerts Instruction Manual D103605X012 January 2015 Travel Note The Travel Alert Deadband applies to the Travel Deviation Alert as well as the Travel Alert Hi, Lo, Hi Hi, and Lo Lo. D Travel Deviation Alert—If the difference between the Travel Target and the Travel exceeds the Travel Deviation Alert Point for more than the Travel Deviation Time, the Travel Deviation Alert is active. It remains active until the difference between the travel target and the Travel is less than the Travel Deviation Alert Point minus the Travel Alert Deadband. D Travel Alert Hi—This alert is active when the Travel exceeds the Travel Alert Hi Point. Once the alert is active, the alert will clear when the Travel falls below the Travel Alert Hi Point minus the Travel Alert Deadband. See figure 5‐1. Figure 5‐1. Travel Alert Deadband ALERT IS SET TRAVEL ALERT HIGH POINT TRAVEL ALERT DEADBAND ALERT IS CLEARED A6532 D Travel Alert Hi Hi—This alert is active when the Travel exceeds the Travel Alert Hi Hi Point. Once the alert is active, the alert will clear when the Travel falls below the Travel Alert Hi Hi Point minus the Travel Alert Deadband. D Travel Alert Lo—This alert is active when the Travel is below the Travel Alert Lo Point. Once the alert is active, the alert will clear when the Travel exceeds the Travel Alert Lo Point plus the Travel Alert Deadband. D Travel Alert Lo Lo—This alert is active when the Travel is below the Travel Alert Lo Lo Point. Once the alert is active, the alert will clear when the Travel exceeds the Travel Alert Lo Lo Point plus the Travel Alert Deadband. D Travel Limit/Cutoff Hi Alert—This alert is active when the Travel exceeds the Hi Limit/Cutoff Point. D Travel Limit/Cutoff Lo Alert—This alert is active when the Travel falls below the Lo Limit/Cutoff Point. D Integrator Saturated High Alert—This alert is active if the instrument integrator is saturated at the high extreme. D Integrator Saturated Low Alert—This alert is active if the instrument integrator is saturated at the low extreme. D Pressure Fallback Active Alert—This alert is active when the instrument has detected a problem with the travel feedback and is now controlling the output like an I/P transducer. 50 Instruction Manual Device Information, Diagnostics, and Alerts D103605X012 January 2015 Travel History D Cycle Count High Alert—This alert is active if the Cycle Counter exceeds the Cycle Count Alert Point. The Cycle Count records the number of times the travel changes direction when it is outside of the deadband. To clear the alert, set the Cycle Counter to a value less than the alert point. D Travel Accumulator High Alert—This alert is active if the Travel Accumulator exceeds the Travel Accumulator Alert Point. The Travel Accumulator totalizes the travel of the valve when the deadband is exceeded. To clear the alert, set the Travel Accumulator to a value less than the alert point. Note The Cycle Count / Travel Accumulator Deadband applies to both the Cycle Count High Alert and the Travel Accumulator High Alert. The deadband is the percent (%) of ranged travel around a travel reference point. The travel reference point gets re­established to the point of travel reversal that occurs outside of the deadband. The deadband must be exceeded before a change in travel direction will be counted as a cycle and the accumulated travel (up to the point of travel reversal) is added to the total accumulation. See figure 5‐2. Figure 5‐2. Cycle Counter and Travel Accumulator Deadband Example (set at 10%) DEADBAND EXCEEDED, NEW REFERENCE POINT ESTABLISHED DEADBAND REFERENCE POINT VALVE POSITION DEADBAND (+/- 5%) TIME DEADBAND DARK SEGMENTS REPRESENT THE AMOUNT OF TRAVEL THAT WILL BE ADDED TO THE TRAVEL ACCUMULATOR CYCLE COUNTER INCREMENTS E1473 Alert Record D Alert Record Not Empty Alert—This alert is active when there are 1 or more alerts stored in the alert record. D Alert Record Full Alert—This alert is active when the alert record is full. Additional alerts that are detected will not be saved to the alert record until the alert record is cleared. 51 Device Information, Diagnostics, and Alerts Instruction Manual January 2015 D103605X012 Status D Calibration in Progress Alert—This alert is active when calibration is in progress. D AutoCal in Progress Alert—This alert is active when auto calibration is in progress. D Diagnostic in Progress Alert—This alert is active when a diagnostic test is in progress. D Diagnostic Data Available Alert—This alert is active when diagnostic data has been collected and is being stored in the instrument. D Pressure Control Active Alert—This alert is active when the instrument is controlling like an I/P transducer (Pressure Control instead of Travel Control). Diagnostics Stroke Valve Follow the prompts on the Field Communicator display to select from the following: D Done—Select this if you are done. All ramping is stopped when DONE is selected. D Ramp Open—ramps the travel toward open at the rate of 1.0% per second of the ranged travel. D Ramp Closed—ramps the travel toward closed at the rate of 1.0% per second of the ranged travel. D Ramp to Target—ramps the travel to the specified target at the rate of 1.0% per second of the ranged travel. D Step to Target—steps the travel to the specified target. Partial Stroke Test Note Partial Stroke Test is only available for instrument level ODV. The Partial Stroke Test allows DVC6200 digital valve controllers with instrument level ODV to perform a Valve Signature type of test while the instrument is in service and operational. In some applications, it is important to be able to exercise and test the valve to verify that it will operate when commanded. This feature allows the user to partially stroke the valve while continually monitoring the input signal. If a demand arises, the test is aborted and the valve moves to its commanded position. The partial stroke valve travel is configurable between 1 and 30% maximum travel, in 0.1% increments. Data from the last partial stroke test is stored in the instrument memory for retrieval by ValveLink software. The Partial Stroke Test allows you to perform a partial, 10%, stroke test (standard) or a custom stroke test. With the custom stroke test, the stroke may be extended up to 30%. Be sure to check plant guidelines before performing a custom stroke test. The purpose of this test is to ensure that the valve assembly moves upon demand. A partial stroke test can be initiated when the valve is operating at either 4 or 20 mA (point‐to‐point mode). In applications where a spurious trip is to be minimized, 4 mA is the normal operating position. 52 Instruction Manual Device Information, Diagnostics, and Alerts D103605X012 January 2015 When enabled, a partial stroke test may be initiated by the device (as a scheduled, auto partial stroke test), a remote pushbutton located in the field or at the valve, a Field Communicator, or ValveLink software. D Automatic (Scheduled) The Auto Partial Stroke Test allows the partial stroke test to be scheduled by the DVC6200. The test is scheduled in number of hours between tests. Any power cycle will reset the test clock timer. D Local Pushbutton A partial stroke test command may be sent to the digital valve controller using a set of contacts wired to the auxiliary +/- terminals. To perform a test, the contacts must be closed for 3 to 5 seconds and then opened. To abort the test, close the contacts for 1 second. The last set of diagnostic data is stored in the instrument memory for later retrieval via ValveLink software. D Field Communicator 1. Connect the Field Communicator to the LOOP terminals on the digital valve controller. 2. Turn on the Field Communicator. 3. From the Online menu, select Service Tools > Diagnostics > Partial Stroke Test. 4. Select either Standard (10%) or Custom. With the Custom Stroke Test, the stroke may be entered up to 30% with configurable stroking speed and pause time. 5. The currently configured Stroke, Stroking Speed, and Pause Time is displayed. Choose “Yes” to run the test using these values. Choose “No” to modify the values. The default value for Stroke Speed is 0.25%/second. 6. The valve begins to move and the actual travel reported by the digital valve controller is displayed on the Field Communicator. 7. Once the valve has reached the endpoint, check that the valve has reached the desired set point. The valve should return to its original position. For information on configuring the Partial Stroke Test, see Partial Stroke Variables in the Detailed Setup section. Variables Field Communicator Service Tools > Variables (3-4) The Variables section provides current values of the instrument variables. Below is a list of the variables available for viewing: D Write Protection (also provides a procedure to enable/disable) D Instrument Mode (also provides a procedure to place in/out of service) D Analog Input D Setpoint D Travel D Drive Signal D Input Characterization (also provides a procedure to modify) D Cycle Counter D Travel Accumulator D Supply Pressure (not available in Instrument Level HC) 53 Device Information, Diagnostics, and Alerts January 2015 D Actuator Pressure(s) D Travel/Pressure Control Configuration (also provides a procedure to modify) D Control Mode (also provides a procedure to modify) D Instrument Temperature D Travel Counts (this is the raw travel sensor reading used for advanced adjustments) D Maximum Recorded Temperature D Minimum Recorded Temperature D Number of Power Ups D Days Powered Up 54 Instruction Manual D103605X012 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 Section 6 Maintenance and Troubleshooting66 The DVC6200 digital valve controller enclosure is rated Type 4X and IP66, therefore periodic cleaning of internal components is not required. If the DVC6200 is installed in an area where the exterior surfaces tend to get heavily coated or layered with industrial or atmospheric contaminants, however, it is recommended that the vent (key 52) be periodically inspected to ensure it is fully open. If the vent appears to be clogged, it can be removed, cleaned and replaced. Lightly brush the exterior of the vent to remove contaminants and run a mild water/detergent solution through the vent to ensure it is fully open. Allow the vent to dry before reinstalling. WARNING Personal injury or property damage can occur from cover failure due to overpressure. Ensure that the housing vent opening is open and free of debris to prevent pressure buildup under the cover. WARNING To avoid static discharge from the plastic cover when flammable gases or dust are present, do not rub or clean the cover with solvents. To do so could result in a spark that may cause the flammable gases or dust to explode, resulting in personal injury or property damage. Clean with a mild detergent and water only. WARNING Avoid personal injury or property damage from sudden release of process pressure or bursting of parts. Before performing any maintenance procedures on the DVC6200 digital valve controller: D Always wear protective clothing, gloves, and eyewear. D Do not remove the actuator from the valve while the valve is still pressurized. D Disconnect any operating lines providing air pressure, electric power, or a control signal to the actuator. Be sure the actuator cannot suddenly open or close the valve. D Use bypass valves or completely shut off the process to isolate the valve from process pressure. Relieve process pressure from both sides of the valve. D Use lock‐out procedures to be sure that the above measures stay in effect while you work on the equipment. D Check with your process or safety engineer for any additional measures that must be taken to protect against process media. D Vent the pneumatic actuator loading pressure and relieve any actuator spring precompression so the actuator is not applying force to the valve stem; this will allow for the safe removal of the stem connector. WARNING When using natural gas as the supply medium, or for explosion proof applications, the following warnings also apply: D Remove electrical power before removing the housing cap. Personal injury or property damage from fire or explosion may result if power is not disconnected before removing the cap. D Remove electrical power before disconnecting any of the pneumatic connections. D When disconnecting any of the pneumatic connections or any pressure retaining part, natural gas will seep from the unit and any connected equipment into the surrounding atmosphere. Personal injury or property damage may result 55 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 from fire or explosion if natural gas is used as the supply medium and appropriate preventive measures are not taken. Preventive measures may include, but are not limited to, one or more of the following: ensuring adequate ventilation and the removal of any ignition sources. D Ensure that the cover is correctly installed before putting this unit back into service. Failure to do so could result in personal injury or property damage from fire or explosion. CAUTION When replacing components, use only components specified by the factory. Always use proper component replacement techniques, as presented in this manual. Improper techniques or component selection may invalidate the approvals and the product specifications, as indicated in table 1‐2, and may also impair operations and the intended function of the device. Because of the diagnostic capability of the DVC6200, predictive maintenance is available through the use of ValveLink software. Using the digital valve controller, valve and instrument maintenance can be enhanced, thus avoiding unnecessary maintenance. For information on using ValveLink software, refer to the ValveLink software online help. Removing the Magnetic Feedback Assembly To remove the magnet assembly from the actuator stem, perform the following basic steps. 1. Make sure that the valve is isolated from the process. 2. Remove the instrument terminal box cover. 3. Disconnect the field wiring from the terminal board. 4. Shut off the instrument air supply. 5. Disconnect the pneumatic tubing and remove the DVC6200 or the DVC6215 from the actuator. 6. Remove the screws holding the magnet assembly to the connector arm. When replacing the instrument, be sure to follow the mounting guidelines in the quick start guide (D103556X012) that shipped with the digital valve controller. Setup and calibrate the instrument prior to returning to service. Module Base Maintenance The digital valve controller contains a module base consisting of the I/P converter, printed wiring board assembly, and pneumatic relay. The module base may be easily replaced in the field without disconnecting field wiring or tubing. Tools Required Table 6‐1 lists the tools required for maintaining the DVC6200 digital valve controller. Table 6‐1. Tools Required Tool Size Phillips Screwdriver Hex key Hex key Hex key Hex key 56 5 mm 1.5 mm 2.5 mm 6 mm Component Relay, printed wiring board assembly, and cover screws Terminal box screw Terminal box cover screw I/P converter screws Module base screws Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 Component Replacement When replacing any of the components of the DVC6200, the maintenance should be performed in an instrument shop whenever possible. Make sure that the electrical wiring and pneumatic tubing is disconnected prior to disassembling the instrument. Removing the Module Base Refer to figure 7‐2 or 7‐4 for key number locations. WARNING To avoid personal injury or equipment damage from bursting of parts, turn off the supply pressure to the digital valve controller and bleed off any excess supply pressure before attempting to remove the module base assembly from the housing. 1. Unscrew the four captive screws in the cover (key 43) and remove the cover from the module base (key 2). 2. Using a 6 mm hex socket wrench, loosen the three‐socket head screws (key 38). These screws are captive in the module base by retaining rings (key 154). Note The module base is linked to the housing by two cable assemblies. Disconnect these cable assemblies after you pull the module base out of the housing. 3. Pull the module base straight out of the housing (key 1). Once clear of the housing, swing the module base to the side of the housing to gain access to the cable assemblies. 4. The digital valve controller/base unit has two cable assemblies, shown in figure 6‐1, which connect the module base, via the printed wiring board assembly, travel sensor and the terminal box. Disconnect these cable assemblies from the printed wiring board assembly on the back of the module base. Figure 6‐1. Printed Wiring Board Cable Connections MODULE BASE ASSEMBLY PRINTED WIRING BOARD ASSEMBLY TERMINAL BOX W9924-1_no label HOUSING CABLE TO TERMINAL BOX CABLE TO TRAVEL SENSOR 57 Maintenance and Troubleshooting January 2015 Instruction Manual D103605X012 Replacing the Module Base Refer to figure 7‐2 or 7‐4 for key number locations. CAUTION To avoid affecting performance of the instrument, take care not to damage the module base seal or guide surface. Do not bump or damage the bare connector pins on the PWB assembly. Damaging either the module base or guide surface may result in material damage, which could compromise the instruments ability to maintain a pressure seal. Note To avoid affecting performance of the instrument, inspect the guide surface on the module and the corresponding seating area in the housing before installing the module base assembly. These surfaces must be free of dust, dirt, scratches, and contamination. Ensure the module base seal is in good condition. Do not reuse a damaged or worn seal. 1. Ensure the module base seal (key 237) is properly installed in the housing (key 1). Ensure the O‐ring (key 12) is in place on the module base assembly. 2. Connect the travel sensor and terminal box cable assemblies to the PWB assembly (key 50). Orientation of the connector is required. 3. Insert the module base (key 2) into the housing (key 1). 4. Install three socket head screws (key 38) in the module base into the housing. If not already installed, press three retaining rings (key 154) into the module base. Evenly tighten the screws in a crisscross pattern to a final torque of 16 NSm (138 lbfSin). WARNING Personal injury, property damage, or disruption of process control can result if the cable assemblies/wiring are damaged when attaching the cover to the module base assembly Ensure that the cable assemblies/wiring are positioned in the cavity of the module base so they do not get compressed or damaged when attaching the cover to the module base assembly in step 5. 5. Attach the cover (key 43) to the module base assembly. Submodule Maintenance The module base of the DVC6200 contains the following submodules: I/P converter, PWB assembly, and pneumatic relay. If problems occur, these submodules may be removed from the module base and replaced with new submodules. After replacing a submodule, the module base may be put back into service. CAUTION Exercise care when performing maintenance on the module base. Reinstall the cover to protect the I/P converter and gauges when servicing other submodules. In order to maintain accuracy specifications, do not strike or drop the I/P converter during submodule maintenance. 58 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 I/P Converter Refer to figure 7‐2 or 7‐4 for key number locations. The I/P converter (key 41) is located on the front of the module base. Note After I/P converter submodule replacement, calibrate the digital valve controller to maintain accuracy specifications. Replacing the I/P Filter A screen in the supply port beneath the I/P converter serves as a secondary filter for the supply medium. To replace this filter, perform the following procedure: 1. Remove the I/P converter (key 41) and shroud (key 169) as described in the Removing the I/P Converter procedure. 2. Remove the screen (key 231) from the supply port. 3. Install a new screen in the supply port as shown in figure 6‐2. Figure 6‐2. I/P Filter Location O‐RING LOCATED IN I/P CONVERTER OUTPUT PORT SCREEN (FILTER) LOCATED IN I/P CONVERTER SUPPLY PORT W8072 4. Inspect the O‐ring (key 39) in the I/P output port. if necessary, replace it. 5. Reinstall the I/P converter (key 41) and shroud (key 169) as described in the Replacing the I/P Converter procedure. Removing the I/P Converter 1. Remove the front cover (key 43), if not already removed. 2. Refer to figure 6‐3. Using a 2.5 mm hex socket wrench, remove the four socket‐head screws (key 23) that attach the shroud (key 169) and I/P converter (key 41) to the module base (key 2). 3. Remove the shroud (key 169); then pull the I/P converter (key 41) straight out of the module base (key 2). Be careful not to damage the two electrical leads that come out of the base of the I/P converter. 59 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 4. Ensure that the O‐ring (key 39) and screen (key 231) stay in the module base and do not come out with the I/P converter (key 41). Replacing the I/P Converter 1. Refer to figure 6‐2. Inspect the condition of the O‐ring (key 39) and screen (key 231) in the module base (key 2). Replace them, if necessary. Apply silicone lubricant to the O‐rings. 2. Ensure the two boots (key 210) shown in figure 6‐3 are properly installed on the electrical leads. Figure 6‐3. I/P Converter I/P CONVERTER (KEY 41) W9328 SHROUD (KEY 169) SOCKET‐HEAD SCREWS (4) (KEY 23) BOOTS (KEY 210) 3. Install the I/P converter (key 41) straight into the module base (key 2), taking care that the two electrical leads feed into the guides in the module base. These guides route the leads to the printed wiring board assembly submodule. 4. Install the shroud (key 169) over the I/P converter (key 41). 5. Install the four socket‐head screws (key 23) and evenly tighten them in a crisscross pattern to a final torque of 1.6 NSm (14 lbfSin). 6. After replacing the I/P converter, calibrate travel or perform touch‐up calibration to maintain accuracy specifications. 60 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 Printed Wiring Board (PWB) Assembly Refer to figure 7‐2 or 7‐4 for key number locations. The PWB assembly (key 50) is located on the back of the module base assembly (key 2). Note If the PWB assembly submodule is replaced, calibrate and configure the digital valve controller to maintain accuracy specifications. Removing the Printed Wiring Board Assembly 1. Separate the module base from the housing by performing the Removing the Module Base procedure. 2. Remove three screws (key 33). 3. Lift the PWB assembly (key 50) straight out of the module base (key 2). 4. Ensure that the O‐rings (key 40) remain in the pressure sensor bosses on the module base assembly (key 2) after the PWB assembly (key 50) has been removed. Replacing the Printed Wiring Board Assembly and Setting the DIP Switch 1. Apply silicone lubricant to the pressure sensor O‐rings (key 40) and install them on the pressure sensor bosses in the module base assembly. 2. Properly orient the PWB assembly (key 50) as you install it into the module base. The two electrical leads from the I/P converter (key 41) must guide into their receptacles in the PWB assembly and the pressure sensor bosses on the module base must fit into their receptacles in the PWB assembly. 3. Push the PWB assembly (key 50) into its cavity in the module base. 4. Install and tighten three screws (key 33) to a torque of 1 NSm (10.1 lbfSin). 5. Set the DIP switch on the PWB assembly according to table 6‐2. Table 6‐2. DIP Switch Configuration(1) Switch Label Operational Mode DIP Switch Position PT-PT Multi 4­20 mA Point­to­Point Loop 24 VDC Multi­Drop Loop LEFT RIGHT 1. Refer to figure 6‐4 for switch location. 61 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 Figure 6‐4. Printed Wiring Board (PWB) Connections and Settings TRAVEL SENSOR CONNECTOR TERMINAL BOX CONNECTOR OPERATIONAL MODE SELECTION X0463 TRAVEL SENSOR CONNECTOR TRANSMITTER / SWITCH SELECTION TERMINAL BOX CONNECTOR OPERATIONAL MODE SELECTION X0432 Note For the digital valve controller to operate with a 4 to 20 mA control signal, be sure the DIP switch is in the point‐to‐point loop position. 6. Reassemble the module base to the housing by performing the Replacing the Module Base procedure. 7. Setup and calibrate the digital valve controller. 62 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 Pneumatic Relay Refer to figure 7‐2 or 7‐4 for key number locations. The pneumatic relay (key 24) is located on the front of the module base. Note After relay submodule replacement, calibrate the digital valve controller to maintain accuracy specifications. Removing the Pneumatic Relay 1. Loosen the four screws that attach the relay (key 24) to the module base. These screws are captive in the relay. 2. Remove the relay. Replacing the Pneumatic Relay 1. Visually inspect the holes in the module base to ensure they are clean and free of obstructions. If cleaning is necessary, do not enlarge the holes. 2. Apply silicone lubricant to the relay seal and position it in the grooves on the bottom of the relay as shown in figure 6‐5. Press small seal retaining tabs into retaining slots to hold relay seal in place. Figure 6‐5. Pneumatic Relay Assembly RELAY SEAL W8074 3. Position the relay (with shroud) on the module base. Tighten the four screws, in a crisscross pattern, to a final torque of 2 NSm (20.7 lbfSin). 4. Using the Field Communicator, verify that the value for Relay Type parameter matches the relay type installed. 5. After replacing the relay and verifying the relay type, calibrate travel or perform touch‐up calibration to maintain accuracy specifications Gauges, Pipe Plugs, or Tire Valves Depending on the options ordered, the DVC6200 or DVC6205 will be equipped with either gauges (key 47), pipe plugs (key 66), or tire valves (key 67). Single‐acting direct instruments will also have a screen (key 236, figure 7‐3). These are located on the top of the module base next to the relay. 63 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 Perform the following procedure to replace the gauges, tire valves, or pipe plugs. Refer to figure 7‐2 and 7‐3 for key number locations. 1. Remove the front cover (key 43). 2. Remove the gauge, pipe plug, or tire valve as follows: For gauges (key 47), the flats are on the gauge case. Use a wrench on the flats of the gauge to remove the gauge from the module base. For double‐acting instruments, to remove the supply gauge remove one of the output gauges. For pipe plugs (key 66) and tire valves (key 67), use a wrench to remove these from the module base. 3. Apply zinc based anti-seize sealant (key 64) to the threads of the replacement gauges, pipe plugs, or tire valves. 4. Using a wrench, screw the gauges, pipe plugs, or tire valves into the module base. Terminal Box Refer to figure 7‐2 or 7‐4 for key number locations. The terminal box is located on the housing and contains the terminal strip assembly for field wiring connections. Note The DVC6205 feedback connections terminal box (shown in figure 6‐6) is not a replaceable part. Do not remove the tamper proof paint on the screw. Figure 6‐6. Terminal Boxes MAIN TERMINAL BOX X0338 DVC6200 MAIN TERMINAL BOX FEEDBACK CONNECTIONS TERMINAL BOX; NOT REPLACEABLE X0379 DVC6205 Removing the Terminal Box WARNING To avoid personal injury or property damage caused by fire or explosion, remove power to the instrument before removing the terminal box cover in an area which contains a potentially explosive atmosphere or has been classified as hazardous. 1. Loosen the set screw (key 58) in the cap (key 4) so that the cap can be unscrewed from the terminal box. 2. After removing the cap (key 4), note the location of field wiring connections and disconnect the field wiring from the terminal box. 64 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 3. Separate the module base from the housing by performing the Removing the Module Base procedure. 4. Disconnect the terminal box wiring connector from the PWB assembly (key 50). 5. Remove the screw (key 72). Pull the terminal box assembly straight out of the housing. Replacing the Terminal Box Note Inspect all O‐rings for wear and replace as necessary. 1. Apply lubricant, silicone sealant to the O‐ring (key 34) and install the O‐ring over the stem of the terminal box. 2. Insert the terminal box assembly stem into the housing until it bottoms out. Position the terminal box assembly so that the hole for the screw (key 72) in the terminal box aligns with the threaded hole in the housing. Install the screw (key 72). 3. Connect the terminal box wiring connector to the PWB assembly (key 50). Orientation of the connector is required. 4. Reassemble the module base to the housing by performing the Replacing the Module Base procedure. 5. Reconnect the field wiring as noted in step 2 in the Removing the Terminal Box procedure. 6. Apply lubricant, silicone sealant to the O‐ring (key 36) and install the O‐ring over the 2‐5/8 inch threads of the terminal box. Use of a tool is recommended to prevent cutting the O‐ring while installing it over the threads. 7. Apply lithium grease (key 63) to the 2‐5/8 inch threads on the terminal box to prevent seizing or galling when the cap is installed. 8. Screw the cap (key 4) onto the terminal box. 9. Install a set screw (key 58) into the cap (key 4). Loosen the cap (not more than 1 turn) to align the set screw over one of the recesses in the terminal box. Tighten the set screw (key 58). Troubleshooting If communication or output difficulties are experienced with the instrument, refer to the troubleshooting chart in table 6‐3. Also see the DVC6200 Technical Support Checklist on page 68. Checking Voltage Available WARNING Personal injury or property damage caused by fire or explosion may occur if this test is attempted in an area which contains a potentially explosive atmosphere or has been classified as hazardous. To check the Voltage Available at the instrument, perform the following: 1. Connect the equipment in figure 2‐3 to the field wiring in place of the FIELDVUE instrument. 2. Set the control system to provide maximum output current. 3. Set the resistance of the 1 kilohm potentiometer shown in figure 2‐3 to zero. 4. Record the current shown on the milliammeter. 65 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 5. Adjust the resistance of the 1 kilohm potentiometer until the voltage read on the voltmeter is 10.0 volts. 6. Record the current shown on the milliammeter. 7. If the current recorded in step 6 is the same as that recorded in step 4 (± 0.08 mA), the voltage available is adequate. 8. If the voltage available is inadequate, refer to Wiring Practices in the Installation section. Restart Processor This is a “soft” reset of the device. This procedure can only be performed while the instrument is out of service. A soft reset will immediately put into effect changes that have been sent to the instrument. Also, if the device is configured to shutdown on an alert, the soft reset will clear the shutdown. Table 6‐3. Instrument Troubleshooting Symptom 1. Analog input reading at instrument does not match actual current provided. Possible Cause 1a. Check the control mode using the Field Communicator. If in the Digital or Test mode, the instrument receives its set point as a digital signal. Control is not based on input current. Change Control Mode to Analog. 1b. Low control system compliance voltage. 1b. Check system compliance voltage (see Wiring Practices in the Installation section. 1c. Check instrument status using the Field Communicator (see Viewing Instrument Status in the Viewing Device Information section). 1d. Calibrate the analog input sensor (see Analog Input Calibration in the Calibration section). 1e. Excessive moisture in the terminal box can cause current leakage. Typically the current will vary randomly if this is the case. Allow the inside of the terminal box to dry, then retest. 2a. Calculate Voltage Available (see Wiring Practices in the Installation section). Voltage Available should be greater than or equal to 10 VDC. 2b. Install a HART filter after reviewing Control System Compliance Voltage requirements (see Wiring Practices in the Installation section). 2c. Review maximum cable capacitance limits (see Wiring Practices in the Installation section). 2d. Check filter adjustment (see the appropriate HART filter instruction manual). 2e. Check polarity of wiring and integrity of connections. Make sure cable shield is grounded only at the control system. 2f. Check control system minimum output setting, which should not be less than 3.8 mA. 2g. Verify connectors are plugged in correctly. 1c. Instrument shutdown due to self test failure. 1d. Analog input sensor not calibrated. 1e. Current leakage. 2. Instrument will not communicate. 2a. Insufficient Voltage Available. 2b. Controller output Impedance too low. 2c. Cable capacitance too high. 2d. HART filter improperly adjusted. 2e. Improper field wiring. 2f. Controller output providing less than 4 mA to loop. 2g. Disconnected loop wiring cable at PWB. 2h. PWB DIP switch not set properly. 66 Action 1a. Control mode not Analog. 2h. Check for incorrect setting or broken DIP switch on the back of the PWB. Reset switch or replace PWB, if switch is broken. See table 6‐2 for switch setting information Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 Table 6‐3. Instrument Troubleshooting Symptom 2. Instrument will not communicate. Possible Cause 2j. Use a 4-20 mA current source to apply power to the instrument. Terminal voltage across the LOOP+ and LOOPterminals should be 8.0 to 9.5 VDC. If the terminal voltage is not 8.0 to 9.5 VDC, replace the PWB. 2k. Polling address incorrect. 2k. Use the Field Communicator to set the polling address (refer to the Detailed Setup section). From the Utility menu, select Configure Communicator > Polling > Always Poll. Set the instrument polling address to 0. 2l. Defective terminal box. 2l. Check continuity from each screw terminal to the corresponding PWB connector pin. If necessary, replace the terminal box assembly. 2m. If necessary, repair or replace cable. 2m. Defective Field Communicator or ValveLink modem cable. 2n. ValveLink modem defective or not compatible with PC. 2p. ValveLink hardlock defective or not programmed. 3. Instrument will not calibrate, has sluggish performance or oscillates. 2p. Replace if defective or return to factory for programming. 3a. Verify configuration: If necessary, set protection to None. If Out of Service, place In Service. Check: Travel Sensor Motion Tuning set Zero Power Condition Feedback Connection Control mode (should be Analog) Restart control mode (should be Analog) 3b. Restricted pneumatic passages in I/P converter. 3b. Check screen in I/P converter supply port of the module base. Replace if necessary. If passages in I/P converter restricted, replace I/P converter. 3c. Replace O‐ring(s). 3d. Check for bent flapper, open coil (continuity), contamination, staining, or dirty air supply. Coil resistance should be between 1680 ‐ 1860 ohms. Replace I/P assembly if damaged, corroded, clogged, or open coil. 3e. I/P converter ass'y out of spec. 3e. I/P converter ass'y nozzle may have been adjusted. Verify drive signal (55 to 80% for double‐acting; 60 to 85% for single‐acting) with the valve off the stops. Replace I/P converter assembly if drive signal is continuously high or low. 3f. Defective module base seal. 3f. Check module base seal for condition and position. If necessary, replace seal. 3g. Depress relay beam at adjustment location in shroud, look for increase in output pressure. Remove relay, inspect relay seal. Replace relay seal or relay if I/P converter assembly is good and air passages not blocked. Check relay adjustment. 3g. Defective relay. 5. Field Communicator does not turn on. 2n. Replace ValveLink modem. 3a. Configuration errors. 3c. O‐ring(s) between I/P converter ass'y missing or hard and flattened losing seal. 3d. I/P converter ass'y damaged/corroded/clogged. 4. ValveLink diagnostic tests provide erroneous results. Action 2j. PWB failure. 3h. Defective 67CFR regulator, supply pressure gauge jumps around. 4a. Defective pressure sensor. 3h. Replace 67CFR regulator. 4b. Pressure sensor O‐ring missing. 4b. Replace O‐ring. 5a. Battery pack not charged. 5a. Charge battery pack. Note: Battery pack can be charged while attached to the Field communicator or separately. The Field Communicator is fully operable while the battery pack is charging. Do not attempt to charge the battery pack in a hazardous area. 4a. Replace PWB. 67 Instruction Manual Maintenance and Troubleshooting D103605X012 January 2015 DVC6200 Technical Support Checklist Have the following information available prior to contacting your Emerson Process Management sales office for support. 1. Instrument serial number as read from nameplate ________________________________________________ 2. Is the digital valve controller responding to the control signal? Yes _________ No _________ If not, describe ___________________________________________________________________________ 3. Measure the voltage across the “Loop -” and Loop +” terminal box screws when the commanded current is 4.0 mA and 20.0 mA: __________V @ 4.0 mA __________V @ 20.0 mA. (These values should be around 8.6 V @ 4.0 mA and 8.8 V @ 20 mA). 4. Is it possible to communicate via HART to the digital valve controller? Yes _________ No _________ 5. What is the Diagnostic Tier of the digital valve controller? AC ____ HC ____ AD ____ PD ____ ODV____ 6. What is the firmware version of the digital valve controller? ______________ 7. What is the hardware version of the digital valve controller? ______________ 8. Is the digital valve controller's Instrument Mode “In Service”? Yes _________ No _________ 9. Is the digital valve controller's Control Mode set to “Analog”? Yes _________ No _________ 10. Is it on Travel or Pressure control? 11. What are the following parameter readings? Input Signal _________ Supply Pressure _________ Travel Target _________% Drive Signal _________% Pressure A _________ Pressure B _________ Travel _________% 12. What are the following alert readings? Fail alerts _______________________________________________________________________________ Valve alerts _____________________________________________________________________________ Operational status ________________________________________________________________________ Alert event record entries __________________________________________________________________ 13. Export ValveLink data (if available) for the device (Status Monitor, Detailed Setup, etc.). Mounting 1. Which digital valve controller do you have? DVC6200 __________ DVC6205/DVC6215 ___________________ 2. What Make, Brand, Style, Size, etc. actuator is the DVC6200 mounted on? ______________________________ 3. What is the full travel of the valve? ______________________________________________________________ 4. What is the Mounting Kit part number? __________________________________________________________ 5. If mounting kits are made by LBP/Customer, please provide pictures of installation. 6. Is the Mounting kit installed per the instructions? Yes _________ No _________ 7. What is the safe position of the valve? Fail closed _________ Fail open _________ 68 Instruction Manual Parts D103605X012 January 2015 Section 7 Parts77 Parts Ordering Whenever corresponding with your Emerson Process Management sales office about this equipment, always mention the controller serial number. When ordering replacement parts, refer to the 11‐character part number of each required part as found in the following parts list. Part numbers are shown for kits and recommended spares only. For part numbers not shown, contact your Emerson Process Management sales office. WARNING Use only genuine Fisher replacement parts. Components that are not supplied by Emerson Process Management should not, under any circumstances, be used in any Fisher instrument. Use of components not supplied by Emerson Process Management may void your warranty, might adversely affect the performance of the instrument, and could cause personal injury and property damage. Parts Kits Kit Description   1* Elastomer Spare Parts Kit (kit contains parts to  service one digital valve controller)  Standard  Extreme Temperature option   (fluorosilicone elastomers)    Figure 7‐1. Terminal Box Part Number 19B5402X012 19B5402X022   2* Small Hardware Spare Parts Kit (kit contains parts  to service one digital valve controller) 19B5403X012   3* Seal Screen Kit [kit contains 25 seal screens (key 231)   and 25 O‐rings (key 39)] Standard and Extreme Temperature option  (fluorosilicone elastomers)  14B5072X182   4* Terminal Box Kit (see figure 7‐1) WITHOUT I/O PACKAGE WITH I/O PACKAGE Key Description 50 PWB Assembly (HW2) (see figure 7‐2 and 7‐4) for DVC6200 and DVC6205 Note Use only with replace in-kind. The following terminal boxes are compatible only with PWB Assembly electronics hardware revision 2 (HW2). Aluminum, without I/O Package  Standard Temperature (nitrile elastomers) 19B5401X142  Extreme Temperature (fluorosilicone elastomers 19B5401X152 Aluminum, without I/O Package, Natural Gas Approved  Standard Temperature (nitrile elastomers) 19B5401X162  Extreme Temperature (fluorosilicone elastomers 19B5401X172 Aluminum, with I/O Package  Standard Temperature (nitrile elastomers) 19B5401X182  Extreme Temperature (fluorosilicone elastomers) 19B5401X192 Stainless Steel, with I/O Package,  Extreme Temperature (fluorosilicone elastomers) 19B5401X202 *Recommended spare parts Note The following PWB Assemblies are compatible only with the terminal boxes shown in figure 7‐1. Contact your Emerson Process Management sales office if a replacement PWB is needed. Hardware Revision 2 (HW2), without I/O Package  For instrument level HC  For instrument level AD  For instrument level PD  For instrument level ODV Hardware Revision 2 (HW2), with I/O Package  For instrument level HC  For instrument level AD  For instrument level PD  For instrument level ODV 69 Instruction Manual Parts D103605X012 January 2015 Kit Description  5* I/P Converter Kit     Standard     For Extreme Temperature option   (fluorosilicone elastomers)  6*  7*  9 Description  10 Feedback Array Kit Sliding Stem (Linear) (cont'd) 38B6041X152 19 mm (3/4-inch)   Aluminum   Stainless steel 25 mm (1-inch)   Aluminum   Stainless steel 38 mm (1-1/2 inch)   Aluminum   Stainless steel 50 mm (2-inch)   Aluminum   Stainless steel 110 mm (4-1/8 inch)   Aluminum   Stainless steel 210 mm (8-1/4 inch)   Aluminum   Stainless steel 38B6041X132 Spare Housing Assembly Kit  [kit contains housing (key 1); vent assembly (key 52);  seal (only included in Housing A kits) (key 288);  seal (key 237); O‐ring (key 34); O‐ring (only used  with integrally mounted regulator) (key 5)] GE48798X042 GE48798X072 GE48798X082 GE48798X102 Spare I/P Shroud Kit  [kit contains shroud (key 169) and  hex socket cap screw, qty. 4 (key 23)] GE29183X012  11  12* Remote Mount Feedback Unit Kit (see figure 7‐5)  [remote housing assembly (key25); hex socket set  screw (key 58); 1/2 NPT pipe plug (key 62); wire retainer, qty 2  (key 131); terminal cover (key 255); o-ring (key 256); gasket  (Housing A only, used for GX actuator) (key 287); seal  (Housing A only, used for GX actuator) (key 288) GE46670X012 GE40178X012 GG20240X022 GE65853X012 GG20240X032 GE65853X022 GG20240X042 GE65853X032 GG20240X052 GE65853X042 GG20240X082 GE65853X062 GG20243X012 GE65853X072 Mounting Shield Kit  [kit contains shield, qty. 3 and machine   screws, qty. 6] GG05242X022 Gasket/Seal Kit, for use with GX actuator  [kit contains insulating gasket (key 287)  and seal (key 288)] GE45468X012 Parts List Note Part numbers are shown for recommended spares only. For part numbers not shown, contact your Emerson Process Management sales office. Parts with footnote numbers shown are available in parts kits; see footnote information at the bottom of the page. Key Description Feedback Array Kit Sliding Stem (Linear)  [kit contains feedback array and hex socket cap screws, qty. 2,  washer, plain, qty. 2, external tooth lock washer, qty. 2 (only  with aluminum feedback array kit) and alignment template.   210 mm (8-1/4 inch) kit contains feedback array and hex  socket cap screws, qty. 4, washer, plain, qty. 4, external tooth  lock washer, qty. 4 (only with aluminum feedback array kit),  alignment template and insert]. Stainless steel kits only for use  with stainless steel mounting kits. 7 mm (1/4-inch)   Aluminum GG20240X012 Housing (see figure 7‐2 and 7‐4) DVC6200 and DVC6205   1  11  20  52  74 248 249 250 Housing(7) Drive Screw (2 req'd) (DVC6205 only) Shield (DVC6205 only) Vent, plastic(2) Mounting Bracket (DVC6205 only) Screw, hex head (4 req’d) (DVC6205 only) Screw, hex head (4 req’d) (DVC6205 only) Spacer (4 req’d) (DVC6205 only) *Recommended spare parts 2. Available in the Small Hardware Spare Parts Kit 7. Available in the Spare Housing Assembly Kit 70 Part Number Rotary  [Kit contains feedback assembly, pointer assembly, travel  indicator scale and M3 machine pan head screws qty. 2].  Stainless steel kits only for use with stainless steel mounting kits.   Aluminum GE71982X012   Stainless steel GE71982X022 GE48798X032  Stainless Steel   Housing B (used for all actuators except GX)    Extreme Temperature option    (fluorosilicone elastomers)  Housing A (used for GX actuator)  Housing B (used for all actuators except GX)  10 Key Spare Module Base Assembly Kit,  [kit contains module base (key 2); drive screws, qty. 2,  (key 11); shield/label (key 19); hex socket cap screw, qty. 3,  (key 38); self tapping screw, qty. 2 (key 49); pipe plug, qty. 3  (key 61); retaining ring, qty. 3 (key 154); screen (key 236);  and flame arrestors, qty. 3 (key 243)]   Aluminum GE18654X012   Stainless Steel GE18654X022  Aluminum   Housing A (used for GX actuator)    Standard (nitrile elastomers)    Extreme Temperature option     (fluorosilicone elastomers)   Housing B (used for all actuators except GX)    Standard (nitrile elastomers)    Extreme Temperature option    (fluorosilicone elastomers)     8* Part Number Instruction Manual Parts D103605X012 January 2015 Key Description Part Number 267 271 287 288 Standoff (2 req’d) (DVC6205 only) Screen(7) Gasket, Housing A only (used for GX actuator) (DVC6200 only) Seal, Housing A only (used for GX actuator) (DVC6200 only) Common Parts (see figure 7‐2, 7‐3, and 7‐4) DVC6200 and DVC6205  16*  29  33  38  43*  48  49  61  63  64  65 154 236 237 O‐ring(1) (3 req'd) Warning label, for use only with LCIE hazardous area  classifications Mach Screw, pan head, SST(2) (3 req'd) Cap Screw, hex socket, SST(2)(6) (3 req'd) Cover Assembly (includes cover screws)   Standard 38B9580X022   Extreme temperature option   (fluorosilicone elastomers) 38B9580X032 Nameplate Screw, self tapping (2 req'd)(6) Pipe Plug, hex socket(6)  Housing A with relay C (2 req'd ) (used for GX actuator)  Housing A with relay B (1 req'd) (used for GX actuator)  Housing B with relay B and C (1 req'd)   (used for all actuators except GX)  Not required for relay A Lithium grease (not furnished with the instrument) Zinc based anti‐seize compound (not furnished with the instrument) Lubricant, silicone sealant (not furnished with the instrument) Retaining Ring(2) (3 req'd) Screen (required for relay B and C only)(7) Module Base Seal(1) Module Base (see figure 7‐2 and 7‐4) DVC6200 and DVC6205   2  11  12  19  61 243 Module Base(6) Drive Screw(6) (2 req'd) O‐ring(1) Shield(6) Pipe Plug, hex socket(6) (3 req'd) Slotted Pin (flame arrestor)(6) (3 req'd) *Recommended spare parts 1. Available in the Elastomer Spare Parts Kit 2. Available in the Small Hardware Spare Parts Kit 3. Available in the Seal Screen Kit 5. Available in the I/P Converter Kit 6. Available in the Spare Module Base Assembly Kit 7. Available in the Spare Housing Assembly Kit 8. Available in the Spare Shroud Kit Key Description Part Number I/P Converter Assembly (see figure 7‐2 and 7‐4) DVC6200 and DVC6205  23  39*  41 169 210* 231* Cap Screw, hex socket, SST(2)(8) (4 req'd) O‐ring(1)(3)(5) I/P Converter(5) Shroud(5)(8) (see figure 6‐3) Boot, nitrile(1)(5) (2 req'd) (see figure 6‐3) Seal Screen(1)(3)(5) Relay (see figure 7‐2 and 7‐4) DVC6200 and DVC6205  24* Relay Assembly, (includes shroud, relay seal, mounting screws)   Standard (nitrile elastomers)   Standard Bleed   Housing A (used for GX actuator)    Single‐acting direct (relay C)    Single‐acting reverse (relay B)   Housing B (used for all actuators except GX)    Single‐acting direct (relay C)    Double‐acting (relay A)    Single‐acting reverse (relay B)   Low Bleed   Housing A (used for GX actuator)    Single‐acting direct (relay C)    Single‐acting reverse (relay B)   Housing B (used for all actuators except G)    Single‐acting direct (relay C)    Double‐acting (relay A)    Single‐acting reverse (relay B) 38B5786X182 38B5786X172 38B5786X132 38B5786X052 38B5786X092 38B5786X202 38B5786X192 38B5786X152 38B5786X072 38B5786X112   Extreme Temperature option (fluorosilicone elastomers)   Standard Bleed     Single‐acting direct (relay C)     Double‐acting (relay A)     Single‐acting reverse (relay B) 38B5786X142 38B5786X032 38B5786X102   Low Bleed     Single‐acting direct (relay C)     Double‐acting (relay A)     Single‐acting reverse (relay B) 38B5786X162 38B5786X082 38B5786X122 71 Instruction Manual Parts D103605X012 January 2015 Key Description Part Number Key Description Part Number Pressure Gauges, Pipe Plugs, or Tire Valve Assemblies (see figure 7‐3) Loop Connections Terminal Box (see figure 7‐2 and 7‐4) DVC6200 and DVC6205  47* Pressure Gauge, nickel‐plated brass case, brass connection  Double‐acting (3 req'd); Single‐acting (2 req'd)   PSI/MPA Gauge Scale    To 60 PSI, 0.4 MPa 18B7713X042    To 160 PSI, 1.1 MPa 18B7713X022   PSI/bar Gauge Scale    To 60 PSI, 4 bar 18B7713X032    To 160 PSI, 11 bar 18B7713X012   PSI/KG/CM2 Gauge Scale    To 60 PSI, 4 KG/CM2 18B7713X072    To 160 PSI, 11 KG/CM2 18B7713X082  66 Pipe Plug, hex head  For double‐acting and single‐acting direct w/gauges   (none req'd)  For single‐acting reverse w/gauges (1 req'd)  For all units w/o gauges (3 req'd)  67 Tire Valve, used with Tire Valve Option only  Double‐acting (3 req'd); Single‐acting (2 req'd) DVC6200 and DVC6205   4  34*  36*  58  72 164 Terminal Box Cap O‐ring(1)(4) O‐ring(1)(4) Set Screw, hex socket, SST(2) Cap Screw, hex socket, SST(2) Terminal Box Assembly Feedback Connections Terminal Box (see figure 7‐4) DVC6215 Feedback Unit (see figure 7‐5) DVC6205   4  34*  36*  58  62 262 263* Terminal Box Cap O‐ring(1)(4) O‐ring(1)(4) Set Screw, hex socket, SST(2) Pipe Plug, hex hd, SST Adapter O-ring Standard Extreme temperature option, (fluorosilicone)  65 Lubricant, silicone sealant (not furnished with the instrument) 256* O-Ring, fluorosilicone 1K1810X0122 HART Filters 1F463606992 1F4636X0092     HF340, DIN rail mount HF341, DIN rail Mount, pass through (no filter) *Recommended spare parts 72 1. Available in the Elastomer Spare Parts Kit 2. Available in the Small Hardware Spare Parts Kit 4. Available in the Terminal Box Kit 39B5411X022 39B5412X012 Instruction Manual Parts D103605X012 January 2015 Figure 7‐2. FIELDVUE DVC6200 Digital Valve Controller Housing Assembly HOUSING A—BACK VIEW (USED FOR GX ACTUATOR) DOUBLE‐ACTING DIRECT‐ACTING HOUSING B—BACK VIEW (USED FOR ALL ACTUATORS EXCEPT GX) REVERSE‐ACTING APPLY LUBRICANT, SEALANT, OR THREAD LOCK APPLY LUBRICANT ON ALL O-RINGS UNLESS OTHERWISE SPECIFIED GE40185 sheet 1 of 3 73 Instruction Manual Parts D103605X012 January 2015 Figure 7‐2. FIELDVUE DVC6200 Digital Valve Controller Housing Assembly (continued) SECTION C-C SCALE 2 : 1 SECTION A-A SECTION E-E SCALE 2 : 1 SECTION F-F SCALE 2 : 1 APPLY LUBRICANT, SEALANT, OR THREAD LOCK APPLY LUBRICANT ON ALL O-RINGS UNLESS OTHERWISE SPECIFIED GE40185 sheet 2 of 3 Figure 7‐3. Gauge Configuration DOUBLE‐ACTING FOR PIPE PLUG OPTION REPLACE 47 WITH 66 FOR TIRE VALVE OPTION REPLACE 47 WITH 67 APPLY LUBRICANT, SEALANT, OR THREAD LOCK APPLY LUBRICANT ON ALL O-RINGS UNLESS OTHERWISE SPECIFIED GE40185 sheet 3 of 3 74 DIRECT‐ACTING REVERSE‐ACTING Instruction Manual Parts D103605X012 January 2015 Figure 7‐4. FIELDVUE DVC6205 Base Unit Housing Assembly SECTION B-B SECTION A-A APPLY LUBRICANT, SEALANT, OR THREAD LOCK SECTION H-H APPLY LUBRICANT ON ALL O-RINGS UNLESS OTHERWISE SPECIFIED GE40181 75 Instruction Manual Parts D103605X012 January 2015 Figure 7‐4. FIELDVUE DVC6205 Base Unit Housing Assembly (continued) SECTION C-C SCALE 2 : 1 SECTION E-E SCALE 2 : 1 DOUBLE‐ACTING APPLY LUBRICANT, SEALANT, OR THREAD LOCK APPLY LUBRICANT ON ALL O-RINGS UNLESS OTHERWISE SPECIFIED GE40181 76 DOUBLE‐ACTING SHOWN DIRECT‐ACTING REVERSE‐ACTING Instruction Manual Parts D103605X012 January 2015 Figure 7‐4. FIELDVUE DVC6205 Base Unit Housing Assembly (continued) WALL MOUNTING PIPE MOUNTING APPLY LUBRICANT, SEALANT, OR THREAD LOCK APPLY LUBRICANT ON ALL O-RINGS UNLESS OTHERWISE SPECIFIED GE40181 77 Instruction Manual Parts D103605X012 January 2015 Figure 7‐5. FIELDVUE DVC6215 Remote Feedback Assembly SECTION A-A PARTS NOT SHOWN: 158 APPLY LUBRICANT/SEALANT GE46670-B HOUSING A (USED FOR GX ACTUATOR) SECTION A-A PARTS NOT SHOWN: 158 APPLY LUBRICANT/SEALANT GE40178-B HOUSING B (USED FOR ALL ACTUATORS EXCEPT GX) 78 Instruction Manual Principle of Operation D103605X012 January 2015 Appendix A Principle of OperationAA−A HART Communication The HART (Highway Addressable Remote Transducer) protocol gives field devices the capability of communicating instrument and process data digitally. This digital communication occurs over the same two‐wire loop that provides the 4‐20 mA process control signal, without disrupting the process signal. In this way, the analog process signal, with its faster update rate, can be used for control. At the same time, the HART protocol allows access to digital diagnostic, maintenance, and additional process data. The protocol provides total system integration via a host device. The HART protocol uses frequency shift keying (FSK). Two individual frequencies of 1200 and 2200 Hz are superimposed over the 4‐20 mA current signal. These frequencies represent the digits 1 and 0 (see figure A‐1). By superimposing a frequency signal over the 4-20 mA current, digital communication is attained. The average value of the HART signal is zero, therefore no DC value is added to the 4‐20 mA signal. Thus, true simultaneous communication is achieved without interrupting the process signal. Figure A‐1. HART Frequency Shift Keying Technique +0.5V 0 ANALOG SIGNAL -0.5V 1200 Hz “1” 2200 Hz “0” AVERAGE CURRENT CHANGE DURING COMMUNICATION = 0 A6174 The HART protocol allows the capability of multidropping, i.e., networking several devices to a single communications line. This process is well suited for monitoring remote applications such as pipelines, custody transfer sites, and tank farms. See table 6‐2 for instructions on changing the printed wiring board DIP switch configuration to multidrop. DVC6200 Digital Valve Controller The DVC6200 digital valve controller housing contains the travel sensor, terminal box, pneumatic input and output connections and a module base that may be easily replaced in the field without disconnecting field wiring or tubing. The module base contains the following submodules: I/P converter, printed wiring board (pwb) assembly, and pneumatic relay. The relay position is detected by sensing the magnet on the relay beam via a detector on the printed wiring board. This sensor is used for the minor loop feedback (MLFB) reading. The module base can be rebuilt by replacing the submodules. See figures A‐3 and A‐4. 79 Instruction Manual Principle of Operation D103605X012 January 2015 Figure A‐2. Typical FIELDVUE Instrument to Personal Computer Connections for ValveLink Software CONTROL SYSTEM HART MODEM FIELD TERM. E1362 DVC6200 digital valve controllers are loop‐powered instruments that provide a control valve position proportional to an input signal from the control room. The following describes a double‐acting digital valve controller mounted on a piston actuator. The input signal is routed into the terminal box through a single twisted pair of wires and then to the printed wiring board assembly submodule where it is read by the microprocessor, processed by a digital algorithm, and converted into an analog I/P drive signal. As the input signal increases, the drive signal to the I/P converter increases, increasing the I/P output pressure. The I/P output pressure is routed to the pneumatic relay submodule. The relay is also connected to supply pressure and amplifies the small pneumatic signal from the I/P converter. The relay accepts the amplified pneumatic signal and provides two output pressures. With increasing input (4 to 20 mA signal), the output A pressure always increases and the output B pressure decreases. The output A pressure is used for double‐acting and single‐acting direct applications. The output B pressure is used for double‐acting and single‐acting reverse applications. As shown in figure A‐3 the increased output A pressure causes the actuator stem to move downward. Stem position is sensed by the non‐contact travel feedback sensor. The stem continues to move downward until the correct stem position is attained. At this point the printed wiring board assembly stabilizes the I/P drive signal. This positions the flapper to prevent any further increase in nozzle pressure. As the input signal decreases, the drive signal to the I/P converter submodule decreases, decreasing the I/P output pressure. The pneumatic relay decreases the output A pressure and increases the output B pressure. The stem moves upward until the correct position is attained. At this point the printed wiring board assembly stabilizes the I/P drive signal. This positions the flapper to prevent any further decrease in nozzle pressure. 80 Instruction Manual Principle of Operation D103605X012 January 2015 Figure A‐3. FIELDVUE DVC6200 Digital Valve Controller Block Diagram INPUT SIGNAL 4-20 mA + HART VALVE TRAVEL FEEDBACK PRINTED WIRING BOARD TERMINAL BOX DRIVE SIGNAL OUTPUT A AUXILIARY TERMINALS I/P CONVERTER PNEUMATIC RELAY SUPPLY PRESSURE OUTPUT B VENT VALVE AND ACTUATOR E1361 Figure A‐4. FIELDVUE DVC6200 Digital Valve Controller Assembly HOUSING PNEUMATIC RELAY GAUGES COVER TERMINAL BOX WITH COVER PRINTED WIRING BOARD ASSEMBLY MODULE BASE ASSEMBLY I/P CONVERTER W9925-2 81 Principle of Operation January 2015 82 Instruction Manual D103605X012 Instruction Manual Field Communicator Menu Trees D103605X012 January 2015 Appendix B Field Communicator Menu Trees This section contains the Field Communicator menu trees for instrument level HC, AD, PD, and ODV. It also contains an alphabetized function/variable list to help locate the function/variable on the appropriate menu tree. All Fast Key Sequences referenced in the menu trees assume the Online menu (see figure B-2) as the starting point. Instrument Level HC, AD, PD, and ODV Function/Variable Actual Travel Actuator Manufacturer Actuator Model Actuator Selection Actuator Size Actuator Style Air Alert Record Full Enable Alert Record Not Empty Enable Alert Switch Source Analog Input Analog Input (Calibration) Analog Input Units Area Units Auto Calibration Auxiliary Terminal Action Auxiliary Terminal Action, Edit Breakout Torque Burst Mode Calibration Button Calibration Record Calibration Time Calibration Type Calibrator Change Control Mode Change Instrument Mode Change to HART 5 Change to HART 7 Change Write Protection Clear Records Control Mode Critical NVM Failure Shutdown Custom Characterization Cycle Count Alert Enable Cycle Count Alert Point Cycle Counter Cycle Count/Travel Accum Deadband Days Powered Up DD Information Description Device ID Device Revision Device Setup Device Status Drive Current Failure Shutdown Drive Signal See Figure B-5 B-5 B-5 B-5 B-5 B-7 B-5 B-8 B-8 B-7 B-3, B-10 B-9 B-5 B-5 B-9 B-5 B-5 B-5 B-7 B-5 B-9 B-9 B-9 B-9 B-6, B-10 B-1, B-5 B-10 B-10 B-1, B-3, B-5 B-8, B-10 B-6, B-10 B-8 B-6, B-10 B-8 B-8 B-10 B-8 B-10 B-3 B-3, B-5 B-3 B-3 B-4 B-3, B-10 B-8 B-10 Function/Variable Drive Signal Alert Enable Dynamic Torque Edit Cycle Counts Edit Instrument Time Edit Travel Accumulator Effective Area (Acutator) End Point Pressure Control (EPPC) EPPC Deviation (Alert Setup) Fail Signal Fallback Recovery Feedback Connection Firmware Revision Flash Integrity Failure Shutdown Flow Direction Flow Tends to Function Hardware Revision (Device) HART Long Tag HART Tag HART Universal Revision Hi Limit/Cutoff Point Hi Limit/Cutoff Select HART Variable Assignments Inlet Pressure Input Characterization Input Range Hi Input Range Lo Instrument Alert Record Instrument Level Instrument Mode Instrument Serial Number Instrument Time is Approximate Enable Integral Enable Integral Gain Integrator Saturated High Enable Integrator Saturated Lo Enable Integrator Limit Intgegral Dead Zone Last AutoCal Status Leak Class (Trim) Length Units Lever Arm Length Lever Style Limit Switch Trip Point Limit Switch Valve Close Limit Switch Valve Open See Figure B-8 B-5 B-8 B-5, B-8 B-8 B-5 B-6 B-8 B-7 B-6, B-8, B-10 B-7 B-3 B-8 B-5 B-5 B-7 B-3 B-3, B-5 B-3, B-5 B-3 B-6, B-8 B-6, B-8 B-7 B-5 B-6, B-10 B-5 B-5 B-8 B-3 B-1, B-5 B-3, B-5 B-8 B-7 B-7 B-8 B-8 B-7 B-7 B-9 B-5 B-5 B-5 B-5 B-7 B-5 B-5 83 Instruction Manual Field Communicator Menu Trees D103605X012 January 2015 Function/Variable Lo Limit/Cutoff Point Lo Limit/Cutoff Select Manual Calibration Manufacturer (Device) Maximum Recorded Temperature Maximum Supply Pressure Message Mininum Recorded Temperature Minor Loop Sensor Failure Shutdown MLFB Gain Model (Device) Non-Critical NVM Failure Shutdown Number of Power Ups Outlet Pressure Output Circuit Comm Failure Enable Output Terminal Enable Packing Type Partial Stroke Test Partial Stroke Test (PST) Performance Tuner Polling Address Port Diameter (Trim) Port Type (Trim) Position Transmitter Pressure A Pressure A-B Pressure B Pressure Fallback Active Enable Pressure Range Hi Pressure Range Lo Pressure Sensor Failure Shutdown Pressure Sensors (Calibration) Pressure Tuning Set Pressure Units Proportional Gain PST Enable PST Calibration PST Pressure Limit PST Start Point PST Variables Push Down To (Trim) PWB Serial Number Quick Release Rated Travel Relay Adjust Relay Type Reference Voltage Failure Shutdown Reset Valve Stuck Alert Restart Control Mode Restart Processor Seat Type (Trim) Setpoint Shutdown on Alert Solenoid Valve SP Rate Close 84 See Figure B-6, B-8 B-6, B-8 B-9 B-3 B-10 B-7 B-3, B-5 B-10 B-8 B-7 B-3 B-8 B-10 B-5 B-8 B-7 B-5 B-10 B-7 B-4, B-7, B-10 B-5 B-5 B-5 B-5 B-3, B-10 B-3, B-10 B-3, B-10 B-8 B-6 B-6 B-8 B-9 B-7 B-5 B-7 B-7 B-9 B-7 B-7 B-7 B-5 B-3 B-5 B-5 B-9 B-7 B-8 B-10 B-10 B-10 B-5 B-3, B-10 B-8 B-5 B-6 Function/Variable SP Rate Open Spring Rate Spring Rate Units Stabilize/Optimize Stem Diameter Stroke Valve Supply Pressure Supply Pressure Lo Alert Switch Closed Temperature Temperature Units Temp Sensor Failure Shutdown Torque Units Transmitter Output Travel Travel Accumulator Travel Accumulator Alert Enable Travel Accumulator Alert Point Travel Alert Deadband Tavel Alert Hi Enable Travel Alert Hi Hi Enable Travel Alert Hi Hi Point Travel Alert Hi Point Travel Alert Lo Enable Travel Alert Lo Lo Enable Travel Alert Lo Lo Point Travel Alert Lo Point Travel Counts Travel Deviation (Alert Setup) Travel Deviation Pressure Fallback Travel Deviation Pressure Fallback Time Travel Limit/Cutoff High Enable Travel Limit/Cutoff Lo Enable Travel/Pressure Select (Alert Setup) Travel Sensor Failure Shutdown Travel Sensor Motion Travel Tuning Set Travel Units Travel/Pressure Select Unbalanced Area (Trim) Valve Class Valve Manufacturer Valve Model Valve Serial Number Valve Size Valve Style Velocity Gain View Alert Records View Edit Lag Time View Edit Lead/Lag Volume Booster Write Protection Zero Power Condition See Figure B-6 B-5 B-5 B-4, B-7, B-10 B-5 B-10 B-3, B-10 B-8 B-7 B-10 B-5 B-8 B-5 B-7 B-3, B-10 B-10 B-8 B-8 B-8 B-8 B-8 B-8 B-8 B-8 B-8 B-8 B-8 B-10 B-8 B-6 B-6 B-8 B-8 B-8 B-8 B-7 B-7 B-5 B-6, B-10 B-5 B-5 B-5 B-5 B-3, B-5 B-5 B-7 B-7 B-10 B-6 B-6 B-5 B-1, B-3, B-5 B-7 Instruction Manual Field Communicator Menu Trees D103605X012 January 2015 Figure B-1. Hot Key Figure B-2. Online HART Application Hot Key 1 Offline 2 Online 3 Utility 4 HART Diagnostics 1 Instrument Mode 2 Change Instrument Mode 3 Write Protection 4 Change Write Protection Figure B-3. Overview (1) Online 1 Overview 2 Configure 3 Service Tools 1-8-1 (HC) 1-9-1 (AD, PD, ODV) Identification Overview 1-8 (HC) 1-9 (AD, PD, ODV) 1 Device Status 2 Analog Input 3 Setpoint 4 Travel 5 Supply Pressure 1 6 Pressure A 7 Pressure B 8 Pressure A-B 9 Device Information Device Information 1 Identification 2 Revisions 3 Security Security 1-8-3 (HC) 1-9-3 (AD, PD, ODV) 1 Write Protection 2 Change Write Protection 1 HART Tag 2 HART Long Tag 2 3 Manufacturer 4 Model 5 Instrument Level 6 Device ID and Serial Numbers 7 Message 8 Description 1-8-2 (HC) 1-9-2 (AD, PD, ODV) 1-8-1-5 (HC, HART 5) 1-8-1-6 (HC, HART 7) 1-9-1-5 (AD, PD, ODV, HART 5 1-9-1-6 (AD, PD, ODV, HART 7) Device ID and Serial Numbers 1 Device ID 2 Valve Serial Number 3 Instrument Serial Number 4 PWB Serial Number Revisions 1 HART Universal Revision 2 Device Revision 3 Hardware Revision 4 Firmware Revision 5 DD Information NOTES: 1 2 SUPPLY PRESSURE IS AVAILABLE FOR INSTRUMENT LEVEL AD, PD, AND ODV. HART LONG TAG IS AVAILABLE WITH HART 7. Figure B-4. Guided Setup (2-1) Guided Setup 1 Device Setup 2 Performance Tuner 1 NOTES: 1 THIS MENU ITEM IS STABILIZE/OPTIMIZE FOR INSTRUMENT LEVEL HC. 85 Instruction Manual Field Communicator Menu Trees D103605X012 January 2015 Figure B-5. Manual Setup > Mode Protection (2-2-1) and Manual Setup > Instrument (2-2-2) 2-2-1 Mode and Protection Manual Setup 1 Mode and Protection 2 Instrument 3 Travel/Pressure Control 4 Tuning 5 Valve and Actuator 6 Partial Stroke Test (PST) 7 Outputs 2-2-2 Instrument 2-2-2-2 2-2-2-6-5 Serial Numbers 2-2-2-3 Units 1 Pressure Units 2 Temperature Units 3 Analog Input Units 2-2-2-4 Trim 2-2-2-6-4 Terminal Box 1 Calibration Button 2 Auxiliary Terminal Action 2 3 Edit Auxiliary Terminal Action 2-2-2-6-3 1 Seat Type 2 Leak Class 3 Port Diameter 4 Port Type 5 Flow Direction 6 Push Down To 7 Flow Tends To 8 Unbalanced Area 1 Volume Booster 2 Quick Release 3 Solenoid Valve 4 Position Transmitter 5 Limit Switch Valve Open 6 Limit Switch Valve Close 1 1 Instrument Serial Number 2 Valve Serial Number 2-2-2-6 1 Units 2 Valve 3 Trim 4 Actuator 5 Accessories Identification 1 HART Tag 2 HART Long Tag 3 Description 4 Message 5 Polling Address 1 Identification 2 Serial Numbers 3 Units 4 Terminal Box 5 Analog Input Range 6 Spec Sheet 7 Edit Instrument Time Spec Sheet Accessories 2-2-2-1 1 Instrument Mode 2 Change Instrument Mode 3 Write Protection 4 Change Write Protection 2-2-2-5 Analog Input Range 1 Input Range Hi 2 Input Range Lo 2-2-2-6-1 2-2-2-6-2 Units Actuator Valve 1 Actuator Manufacturer 2 Actuator Model 3 Actuator Size 4 Actuator Selection 5 Lever Style 6 Lever Arm Length 7 Effective Area 8 Spring Rate 9 Air 1 Valve Manufacturer 2 Valve Model 3 Valve Size 4 Valve Class 5 Stem Diameter 6 Packing Type 7 Valve Travel 8 Inlet/Outlet Pressures 9 Torque 1 Travel Units 2 Length Units 3 Area Units 4 Spring Rate Units 5 Torque Units 2-2-2-6-2-7 Valve Travel 1 Rated Travel 2 Actual Travel 2-2-2-6-2-9 Torque 1 Dynamic Torque 2 Breakout Torque NOTES: 1 HART LONG TAG IS AVAILABLE WITH HART 7. 2 AUXILIARY TERMINAL ACTION AND EDIT AUXILIARY TERMINAL ACTION ARE AVAILABLE WITH INSTRUMENT LEVEL ODV. 86 2-2-2-6-2-8 Inlet/Outlet Pressures 1 Inlet Pressure 2 Outlet Pressure 2 Instruction Manual Field Communicator Menu Trees D103605X012 January 2015 Figure B-6. Manual Setup > Travel/Pressure Control (2-2-3) 2-2-3 Travel/Pressure Control HC, AD, PD 1 Travel/Pressure Select 2 Cutoffs and Limits 1 3 Pressure Control 4 Pressure Fallback 5 Control Mode 6 Characterization 7 Dynamic Response Manual Setup 2-2-3-6 (HC) 2-2-3-7 (AD, PD) HC, AD, PD Dynamic Response ODV 1 Mode and Protection 2 Instrument 3 Travel/Pressure Control 4 Tuning 5 Valve and Actuator 6 Partial Stroke Test (PST) 7 Outputs 1 SP Rate Open 2 SP Rate Close 3 View/Edit Lag Time 2-2-3-5 (HC) 2-2-3-6 (AD, PD) Characterization 1 Input Characterization 2 Custom Characterization 2-2-3 Travel/Pressure Control ODV 2-2-3-2 Cutoffs and Limits Pressure Control 1 Pressure Range High 2 Pressure Range Lo 2-2-3-4 (AD, PD) Pressure Fallback 1 Tvl Dev Press Fallback 2 Tvl Dev Press Fallback Time 3 Fallback Recovery 2-2-3-4 (HC) 2-2-3-5 (AD, PD) 1 Control Mode 2 Change Control Mode 3 Restart Control Mode End Point Pressure Control (EPPC) 1 EPPC Enab 2 Change EPPC Enab 3 EPPC Set Point 4 EPPC Saturation Time 2-2-3-4 2-2-3-7 Pressure Control Characterization 1 Pressure Range High 2 Pressure Range Lo 1 Input Characterization 2 Custom Characterization 1 Control Mode 2 Change Control Mode 3 Restart Control Mode 2-2-3-3 2-2-3-3 2-2-3-8 2-2-3-6 1 Hi Limit/Cutoff Select 2 Hi Limit/Cutoff Point 3 Lo Limit/Cutoff Select 4 Lo Limit/Cutoff Point 1 Hi Limit/Cutoff Select 2 Hi Limit/Cutoff Point 3 Lo Limit/Cutoff Select 4 Lo Limit/Cutoff Point 1 SP Rate Open 2 SP Rate Close 3 View/Edit Lead/Lag Control Mode Cutoffs and Limits Control Mode 1 Travel/Pressure Select 2 Cutoffs and Limits 3 End Point Pressure Control (EPPC) 4 Pressure Control 5 Pressure Fallback 6 Control Mode 7 Response Control 8 Dynamic Response Dynamic Response 2-2-3-2 2-2-3-5 Pressure Fallback 1 Tvl Dev Press Fallback 2 Tvl Dev Press Fallback Time 3 Fallback Recovery NOTE: 1 PRESSURE FALLBACK IS AVAILABLE FOR INSTRUMENT LEVEL AD, PD, AND ODV. 87 Instruction Manual Field Communicator Menu Trees D103605X012 January 2015 Figure B-7. Manual Setup > Tuning (2-2-4) through Manual Setup > Outputs (2-2-7) 2-2-4-1 2-2-4 Tuning Travel/Pressure Integral Settings 2-2-5 WITHOUT I/O PACKAGE 1 2-2-6 Outputs 4 2-2-6-5 (HC, AD, PD) 2-2-7-5 (ODV) Burst Mode 1 Burst Enable 2 Burst Command 2-2-6-4 (HC, AD, PD) 2-2-7-4 (ODV) HART Var Assignments 1 Primary Variable (PV) 2 Secondary Variable (SV) 3 Tertiary Variable (TV) 4 Quaternary Variable (QV) Valve and Actuator Partial Stroke Test (PST) Output Terminal Config 1 Output Terminal Enable 2 Function 3 Fail Signal Switch Configuration 1 Limit Switch Trip Point 2 Alert Switch Source 3 Switch Closed 2 THIS MENU ITEM IS HART VAR ASSIGNMENTS WITH HART 5. 3 THIS MENU ITEM IS TRANSMITTER OUTPUT WITH HART 5. 4 5 BURST MODE IS AVAILABLE WITH HART 5. PERFORMANCE TUNER IS AVAILABLE FOR INSTRUMENT LEVEL AD, PD, AND ODV. Pressure Tuning 1 Pressure Tuning Set 2 Proportional Gain 3 MLFB Gain 4 Integral Enable 5 Integral Gain 1 WITHOUT I/O PACKAGE 2-2-6 (HD, AD, PD) 2-2-7 (ODV) Outputs 1 HART Var Assignments 2 Burst 4 4 2-2-6-2 (HC, AD, PD) 2-2-7-2 (ODV) 5 1 PST Pressure Limit 2 PST Enable 3 PST Start Point 4 PST Variables 2-2-6-1 (HC, AD, PD) 2-2-7-1 (ODV) NOTES: 1 PARTIAL STROKE TEST (PST) IS AVAILABLE FOR INSTRUMENT LEVEL ODV. 88 2-2-4-2 1 Valve Style 2 Actuator Style 3 Feedback Connection 4 Relay Type 5 Zero Power Condition 6 Travel Sensor Motion 7 Maximum Supply Pressure WITH I/O PACKAGE 2-2-6 (HD, AD, PD) 2-2-7 (ODV) 3 2-2-4-3 1 Integral Dead Zone 2 Integrator Limit WITH I/O PACKAGE 1 Mode and Protection 2 Instrument 3 Travel/Pressure Control 4 Tuning 5 Valve and Actuator 6 Partial Stroke Test (PST) 7 Outputs 1 Output Terminal Config 2 Switch Configuration 3 Transmitter Output 2 4 HART Var Assignments 5 Burst Mode 4 1 Travel Tuning Set 2 Proportional Gain 3 Velocity Gain 4 MLFB Gain 5 Integral Enable 6 Integral Gain 7 Performance Tuner 8 Stabilize/Optimize 1 Travel Tuning 2 Pressure Tuning 3 Travel/Pressure Integral Settings Manual Setup Travel Tuning 2-2-6-2 (HC, AD, PD) 2-2-7-2 (ODV) Burst Mode 1 Burst Enable 2 Burst Command 2-2-6-1 (HC, AD, PD) 2-2-7-1 (ODV) HART Var Assignments 1 Primary Variable (PV) 2 Secondary Variable (SV) 3 Tertiary Variable (TV) 4 Quaternary Variable (QV) Instruction Manual Field Communicator Menu Trees D103605X012 January 2015 Figure B-8. Alert Setup (2-3) 2-3-1 Electronics 1 Drive Signal Alert Enable 2-3-2-2 (HC) 2-3-3-2 (AD, PD, ODV) 2-3-2 (AD, PD, ODV) Supply Pressure Lo Alert 1 Supply Pressure Lo Alert Enable 2 Supply Pressure Lo Alert Point Alert Setup 1 Electronics 2 Supply Pressure Alert 1 3 Travel 4 Pressure Fallback 2 5 Travel History 6 EPPC Deviation 3 7 Output Circuit Comm Failure Enable 8 Shutdown On Alert 5 9 Alert Record/Instrument Time 5 2-3-5 (HC) 2-3-7 (AD, PD) 2-3-9 (ODV) 2-3-2 (HC) 2-3-3 (AD, PD, ODV) 1 Travel Alert DB 2 Travel Deviation 3 Travel Limit 4 Travel Limit/Cutoff 5 Integrator 4 2-3-2-5 (HC) 2-3-3-5 (AD, PD, ODV) 5 Integrator 1 Integrator Sat Hi Enable 2 Integrator Sat Lo Enable 1 Alert Record Not Empty Enable 2 Alert Record Full Enable 3 View Alert Records 4 Clear Records 5 Instrument Alert Record 6 Instrument Time is Approximate Enable 7 Edit Instrument Time 2-3-4 (HC) 2-3-6 (AD, PD) 2-3-8 (ODV) 5 Electronics 2-3-4-1 (HC) 2-3-6-1 (AD, PD) 2-3-8-1 (ODV) 1 Drive Current Failure Shutdown 2 Critical NVM Failure Shutdown 3 Non-Critical NVM Failure Shutdown 4 Flash Integrity Failure Shutdown 5 Reference Voltage Failure Shutdown 2 1 Pressure Fallback Active Enable 2 Travel/Pressure Select 3 Fallback Recovery 1 Travel Alert Hi Hi Enable 2 Travel Alert Hi Hi Point 3 Travel Alert Lo Lo Enable 4 Travel Alert Lo Lo Point 5 Travel Alert Hi Enable 6 Travel Alert Hi Point 7 Travel Alert Lo Enable 8 Travel Alert Lo Point 2-3-2-4 (HC) 2-3-3-4 (AD, PD, ODV) 1 Travel Limit/Cutoff Hi Enable 2 Hi Limit/Cutoff Point 3 Hi Limit/Cutoff Select 4 Travel Limit/Cutoff Lo Enable 5 Lo Limit/Cutoff Point 6 Lo Limit/Cutoff Select 2-3-3 (HC) 2-3-5 (AD, PD, ODV) 5 1 Sensors 2 Electronics Travel Limit Travel Limit/Cutoff 2-3-4 (AD, PD, ODV) Pressure Fallback 1 Travel Deviation 2 Travel Deviation Alert Enable 3 Travel Deviation Alert Point 4 Travel Deviation Time 2-3-2-3 (HC) 2-3-3-3 (AD, PD, ODV) Travel Alert Record/Instrument Time Shutdown On Alert Travel Deviation 1 Travel History 2-3-6 (ODV) EPPC Deviation 3 1 EPPC Deviation Alert Enable 2 EPPC Set Point 3 EPPC Deviation Alert Point 4 EPPC Deviation Time 1 Cycle Count/Travel Accum Deadband 2 Cycle Count Alert Enable 3 Edit Cycle Counts 4 Cycle Count Alert Point 5 Travel Accumulator Alert Enable 6 Edit Travel Accumulator 7 Travel Accumulator Alert Point 2-3-4-2 (HC) 2-3-6-2 (AD, PD) 2-3-8-2 (ODV) Sensors 5 1 Travel Sensor Failure Shutdown 2 Temp Sensor Failure Shutdown 3 Minor Loop Sensor Failure Shutdown 4 Pressure Sensor Failure Shutdown NOTES: 1 SUPPLY PRESSURE LO ALERT IS AVAILABLE FOR INSTRUMENT LEVEL AD, PD, AND ODV. 2 3 4 5 PRESSURE FALLBACK IS AVAILABLE FOR INSTRUMENT LEVEL AD, PD, AND ODV. EPPC DEVIATION IS AVAILABLE FOR INSTRUMENT LEVEL ODV. OUTPUT CIRCUIT COMM FAILURE ENABLE IS AVAILABLE WHEN THE TRANSMITTER FUNCTION IS CONFIGURED. FAST KEY SEQUENCES FOR THESE MENUS DROP ONE MENU SEQUENCE WHEN THE TRANSMITTER FUNCTION IS NOT CONFIGURED. 89 Instruction Manual Field Communicator Menu Trees D103605X012 January 2015 Figure B-9. Calibration (2-4) HART 5 2-4-1 HART 5 Travel Calibration Calibration 1 Travel Calibration 2 Relay Adjust 3 Sensor Calibration 4 PST Calibration 1 1 Auto Calibration 2 Last AutoCal Status 3 Manual Calibration 4 Calibration Record HART 7 HART 7 2-4-1 Travel Calibration 1 Auto Calibration 2 Last AutoCal Status 3 Manual Calibration 4 Calibration Type 5 Calibration Time 6 Calibrator 2-4-3 Sensor Calibration 1 Pressures Sensors 2 Analog Input 2 NOTE: 1 PST CALIBRATION IS AVAILABLE FOR INSTRUMENT LEVEL ODV. 2 ANALOG INPUT IS NOT AVAILABLE WHEN THE DIP SWITCH IS SET TO MULTI-DROP. Figure B-10. Service Tools (3) 3-2 Alert Record 1 View Alert Records 2 Clear Records Service Tools 1 Device Status 2 Alert Record 3 Diagnostics 4 Variables 5 Maintenance Maintenance 3-4-1 3-3 Diagnostics 1 Stroke Valve 2 Partial Stroke Test 1 Performance Tuner 3 2 Stabilize/Optimize 3 Restart Processor 4 Reset Valve Stuck Alert 5 Change to HART 5 5 4 1 Travel/Pressure 2 Control Mode 3 Analog Input 4 Temperature 5 Travel Counts 6 Characterization 7 Travel History 8 Run Time Extremes 3-4-2 Control Mode 1 Control Mode 2 Change Control Mode 3 Restart Control Mode 3-4-8 1 Maximum Recorded Temperature 2 Minimum Recorded Temperature 3 Days Powered Up 4 Number of Power Ups 3-4-6 3-4-7 Travel History 1 Cycle Counter 2 Travel Accumulator NOTES: 90 1 Variables Run Time Extremes 1 2 3 4 5 1 Setpoint 2 Travel 3 Drive Signal 4 Supply Pressure 2 5 Pressure A 6 Pressure B 7 Pressure A-B 8 Travel/Pressure Select 9 Fallback Recovery 2 3-4 3-5 PARTIAL STROKE TEST IS AVAILALBE IN INSTRUMENT LEVEL ODV. SUPPLY PRESSURE AND FALLBACK RECOVERY ARE AVAILABLE FOR AD, PD, ODV. PERFORMANCE TUNER IS AVAILABLE FOR INSTRUMENT LEVEL AD, PD, AND ODV. RESET VALVE STUCK ALERT IS AVAILABLE IN INSTRUMENT LEVEL OD V. THIS MENU ITEM READS CHANGE TO HART 7 WITH HART 5. Travel/Pressure Characterization 1 Input Characterization 2 Custom Characterization Instruction Manual Glossary D103605X012 January 2015 Glossary Alert Point An adjustable value that, when exceeded, activates an alert. Algorithm A set of logical steps to solve a problem or accomplish a task. A computer program contains one or more algorithms. Control Loop An arrangement of physical and electronic components for process control. The electronic components of the loop continuously measure one or more aspects of the process, then alter those aspects as necessary to achieve a desired process condition. A simple control loop measures only one variable. More sophisticated control loops measure many variables and maintain specified relationships among those variables. Alphanumeric Consisting of letters and numbers. Analog Input Units Units in which the analog input is displayed and maintained in the instrument. ANSI (acronym) The acronym ANSI stands for the American National Standards Institute Control Mode Defines where the instrument reads its set point. The following control modes are available for a FIELDVUE Instrument: Analog The instrument receives its travel set point over the 4‐20 mA loop. Digital The instrument receives its set point digitally, via the HART communications link. Test This is not a user‐selectable mode. The Field Communicator or ValveLink software places the instrument in this mode whenever it needs to move the valve, such as for calibration or diagnostic tests. ANSI Class Valve pressure/temperature rating. Bench Set Pressure, supplied to an actuator, required to drive the actuator through rated valve travel. Expressed in pounds per square inch. Byte A unit of binary digits (bits). A byte consists of eight bits. Calibration Location Where the instrument was last calibrated; either in the factory or in the field. Configuration Stored instructions and operating parameters for a FIELDVUE Instrument. Control Mode, Restart Determines the instrument control mode after a restart. See Control Mode for the available restart control modes. Controller A device that operates automatically to regulate a controlled variable. Current‐to‐Pressure (I/P) Converter An electronic component or device that converts a milliamp signal to a proportional pneumatic pressure output signal. Cycle Counter The capability of a FIELDVUE instrument to record the number of times the travel changes direction. The change in direction must occur after the deadband has been exceeded before it can be counted as a cycle. 91 Instruction Manual Glossary D103605X012 January 2015 Cycle Counter Alert Checks the difference between the Cycle Counter and the Cycle Counter Alert Point. Cycle Counter Alert is active when the cycle counter value exceeds the Cycle Counter Alert Point. It clears after you reset the Cycle Counter to a value less than the alert point. Cycle Counter Alert Point An adjustable value which, when exceeded, activates the Cycle Counter Alert. Valid entries are 0 to 4 billion cycles. Drive Signal Alert Checks the drive signal and calibrated travel. If one of the following conditions exists for more than 20 seconds, the Drive Signal Alert is active. If none of the conditions exist, the alert is cleared. If Zero Power Condition = Closed The alert is active when: drive signal <10% and calibrated travel >3% drive signal >90% and calibrated travel <97% If Zero Power Condition = Open The alert is active when: drive signal <10% and calibrated travel <97% drive signal >90% and calibrated travel >3% Equal Percentage Cycle Counter Deadband Region around the travel reference point, in percent of ranged travel, established at the last increment of the Cycle Counter. The deadband must be exceeded before a change in travel can be counted as a cycle. Valid entries are 0% to 100%. Typical value is between 2% and 5%. Deviation Usually, the difference between set point and process variable. More generally, any departure from a desired or expected value or pattern. Device ID Unique identifier embedded in the instrument at the factory. Device Revision Revision number of the interface software that permits communication between the Field Communicator and the instrument. A valve flow characteristic where equal increments of valve stem travel produce equal percentage changes in existing flow. One of the input characteristics available for a FIELDVUE Instrument. See also, Linear and Quick Opening. Feedback Signal Indicates to the instrument the actual position of the valve. The travel sensor provides the feedback signal to the instrument printed wiring board assembly. Firmware Revision The revision number of the instrument firmware. Firmware is a program that is entered into the instrument at time of manufacture and cannot be changed by the user. Free Time Percent of time that the microprocessor is idle. A typical value is 25%. The actual value depends on the number of functions in the instrument that are enabled and on the amount of communication currently in progress. Full Ranged Travel Current, in mA, that corresponds with the point where ranged travel is maximum, i.e., limited by the mechanical travel stops. Gain Drive Signal The signal to the I/P converter from the printed wiring board. It is the percentage of the total microprocessor effort needed to drive the valve fully open. 92 The ratio of output change to input change. Hardware Revision Revision number of the Fisher instrument hardware. The physical components of the instrument are defined as the hardware. Instruction Manual Glossary D103605X012 HART (acronym) The acronym HART stands for Highway Addressable Remote Transducer. HART Universal Revision Revision number of the HART Universal Commands which are the communications protocol for the instrument. Input Characteristic The relationship between the ranged travel and ranged input. Possible values include: linear, equal percentage, and quick opening. Input Current The current signal from the control system that serves as the analog input to the instrument. See also Input Signal. Input Range The analog input signal range that corresponds to the travel range. Input Signal The current signal from the control system. The input signal can be displayed in milliamperes or in percent of ranged input. January 2015 Instrument Protection Determines if commands from a HART device can calibrate and/or configure certain parameters in the instrument. There are two types of instrument protection: Configuration and Calibration: Prohibits changing protected setup parameters; prohibits calibration. None: Permits both configuration and calibration. The instrument is ”unprotected.” Instrument Serial Number The serial number assigned to the printed wiring board by the factory but can be changed during setup. The instrument serial number should match the serial number on the instrument nameplate. Leak Class Defines the allowable leakage by a valve when it is closed. Leak class numbers are listed in two standards: ANSI/FCI 70‐2 and IEC 534‐4. Linear A valve flow characteristic where changes in flow rate are directly proportional to changes in valve stem travel. One of the input characteristics available for a FIELDVUE Instrument. See also, Equal Percentage and Quick Opening. Linearity, dynamic Instrument Level Determines the functions available for the instrument. See table 5‐1. Instrument Mode Determines if the instrument responds to its analog input signal. There are two instrument modes: In Service: For a fully functioning instrument, the instrument output changes in response to analog input changes. Typically changes to setup or calibration cannot be made when the instrument mode is In Service. Out of Service: The instrument output does not change in response to analog input changes when the instrument mode is Out of Service. Some setup parameters can be changed only when the instrument mode is Out of Service. Linearity (independent) is the maximum deviation from a straight line best fit to the opening and closing curves and a line representing the average value of those curves. Memory A type of semiconductor used for storing programs or data. FIELDVUE instruments use three types of memory: Random Access Memory (RAM), Read Only Memory (ROM), and Non‐Volatile Memory (NVM). See also these listings in this glossary. Menu A list of programs, commands, or other activities that you select by using the arrow keys to highlight the item then pressing ENTER, or by entering the numeric value of the menu item. 93 Instruction Manual Glossary D103605X012 January 2015 Minimum Closing Time Minimum time, in seconds, for the travel to decrease through the entire ranged travel. This rate is applied to any travel decrease. Valid entries are 0 to 400 seconds. Deactivate by entering a value of 0 seconds. Minimum Opening Time Minimum time, in seconds, for the travel to increase through the entire ranged travel. This rate is applied to any travel increase. Because of friction, actual valve travel may not respond in exactly the same time frame. Valid entries are 0 to 400 seconds. Deactivate by entering a value of 0 seconds. Non‐Volatile Memory (NVM) A type of semiconductor memory that retains its contents even though power is disconnected. NVM contents can be changed during configuration unlike ROM which can be changed only at time of instrument manufacture. NVM stores configuration restart data. Parallel Simultaneous: said of data transmission on two or more channels at the same time. Polling Address Address of the instrument. If the digital valve controller is used in a point‐to‐point configuration, set the polling address to 0. If it is used in a multidrop configuration, or split range application, set the polling address to a value from 0 to 15. Pressure Sensor A FIELDVUE instrument internal device that senses pneumatic pressure. The DVC6200 has three pressure sensors: one to sense supply pressure and two to sense the output pressures. 94 Primary Master Masters are communicating devices. A primary master is a communicating device permanently wired to a field instrument. Typically, a HART‐compatible control system or a computer running ValveLink software is the primary master. In contrast, a secondary master is not often permanently wired to a field instrument. The Field Communicator or a computer running ValveLink software communicating through a HART modem could be considered a secondary master. Note: If one type of master takes an instrument Out Of Service, the same type must put it In Service. For example, if a device set up as a primary master takes an instrument Out Of Service, a device set up as a primary master must be used to place the instrument In Service. Quick Opening A valve flow characteristic where most of the change in flow rate takes place for small amounts of stem travel from the closed position. The flow characteristic curve is basically linear through the first 40 percent of stem travel. One of the input characteristics available for a FIELDVUE Instrument. See also, Equal Percentage and Linear. Random Access Memory (RAM) A type of semiconductor memory that is normally used by the microprocessor during normal operation that permits rapid retrieval and storage of programs and data. See also Read Only Memory (ROM) and Non‐Volatile Memory (NVM). Rate Amount of change in output proportional to the rate of change in input. Read‐Only Memory (ROM) A memory in which information is stored at the time of instrument manufacture. You can examine but not change ROM contents. Seat Load Force exerted on the valve seat, typically expressed in pounds force per lineal inch of port circumference. Seat load is determined by shutoff requirements. Instruction Manual Glossary D103605X012 Set Point Filter Time (Lag Time) The time constant, in seconds, for the first‐order input filter. The default of 0 seconds will bypass the filter. Software Microprocessor or computer programs and routines that reside in alterable memory (usually RAM), as opposed to firmware, which consists of programs and routines that are programmed into memory (usually ROM) when the instrument is manufactured. Software can be manipulated during normal operation, firmware cannot. Stroking Time The time, in seconds, required to move the valve from its fully open position to fully closed, or vice versa. Temperature Sensor A device within the FIELDVUE instrument that measures the instrument's internal temperature. Travel Movement of the valve stem or shaft which changes the amount the valve is open or closed. Travel Accumulator The capability of a FIELDVUE instrument to record total change in travel. The value of the Travel Accumulator increments when the magnitude of the change exceeds the Travel Accumulator Deadband. To reset the Travel Accumulator, set it to zero. Travel Accumulator Alert Checks the difference between the Travel Accumulator value and the Travel Accumulator Alert Point. The Travel Accumulator Alert is active when the Travel Accumulator value exceeds the Travel Accumulator Alert Point. It clears after you reset the Travel Accumulator to a value less than the alert point. Travel Accumulator Alert Point An adjustable value which, when exceeded, activates the Travel Accumulator Alert. Valid entries are 0% to 4 billion %. January 2015 Travel Accumulator Deadband Region around the travel reference point established at the last increment of the accumulator. This region must be exceeded before a change in travel can be accumulated. Valid entries are 0% to 100%. Travel Alert Checks the ranged travel against the travel high and low alert points. The travel alert is active if either the high or low point is exceeded. Once a high or low point is exceeded, the ranged travel must clear that point by the Travel Alert Deadband before the alert clears. Four travel alerts are available: Travel Alert Hi, Travel Alert Lo, Travel Alert Hi Hi, and Travel Alert Lo Lo. Travel Alert Deadband Travel, in percent of ranged travel, required to clear a travel alert, once it is active. Valid entries are -25% to 125%. Travel Alert High Point Value of the travel, in percent of ranged travel, which, when exceeded, sets the Travel Alert Hi alert. Valid entries are -25% to 125%. Travel Alert High High Point Value of the travel, in percent of ranged travel, which, when exceeded, sets the Travel Alert Hi Hi alert. Valid entries are -25% to 125%. Travel Alert Low Point Value of the travel, in percent of ranged travel, which, when exceeded, sets the Travel Alert Lo alert. Valid entries are -25% to 125%. Travel Alert Low Low Point Value of the travel, in percent of ranged travel, which, when exceeded, sets the Travel Alert Lo Lo alert. Valid entries are -25% to 125%. Travel Cutoff Defines the cutoff point for the travel, in percent of ranged travel. There are two travel cutoffs: high and low. Once travel exceeds the cutoff, the drive signal is set to either maximum or minimum, depending on the Zero Control Signal and if the cutoff is high or low. Minimum opening time or minimum closing time are not in effect while the travel is beyond the cutoff. Use the travel cutoff to obtain the desired seat load or to be sure the valve is fully open. 95 Instruction Manual Glossary D103605X012 January 2015 Travel Deviation The difference between the analog input signal (in percent of ranged input), the “target” travel, and the actual “ranged” travel. Travel Deviation Alert Checks the difference between the target and the ranged travel. If the difference exceeds the Travel Deviation Alert Point for more than the Travel Deviation Time, the Travel Deviation Alert is active. It remains active until the difference is less than the Travel Deviation Alert Point. Travel Sensor A device within the FIELDVUE instrument that senses valve stem or shaft movement. The travel sensor in the DVC6200 is the Hall Effect sensor that measures the position of the magnetic assembly. Travel Sensor Motion Increasing or decreasing air pressure causes the magnet assembly to move up or down or the rotary shaft to turn clockwise or counterclockwise. The Setup Wizard asks if it can move the valve to determine travel. Tuning Travel Deviation Alert Point An adjustable value for the target travel and the ranged travel difference, expressed in percent, When this value is exceeded by the travel deviation for more than the Travel Deviation Time, the Travel Deviation Alert is active. Valid entries are 0% to 100%. Typically this is set to 5%. Travel Deviation Time The time, in seconds. that the travel deviation must exceed the Travel Deviation Alert Point before the alert is active. Valid entries are 1 to 60 seconds. The adjustment of control terms or parameter values to produce a desired control effect. Tuning Set Preset values that identify gain settings for a FIELDVUE instrument. The tuning set and supply pressure together determine an instrument's response to input signal changes. Watch Dog Timer A timer that the microprocessor must rearm periodically. If the microprocessor is unable to rearm the timer, the instrument goes through reset. Zero Power Condition Travel Limit A setup parameter that defines the maximum allowable travel (in percent of ranged travel) for the valve. During operation, the travel target will not exceed this limit. There are two travel limits: high and low. Typically the travel limit low will be used to keep the valve from going completely closed. Travel Range Travel, in percent of calibrated travel, that corresponds to the input range. 96 The position of the valve (open or closed) when the electrical power to the instrument is removed. Zero Power Condition (ZPC) is determined by relay and actuator action as follows: Single Acting Direct (Relay C) Upon loss of electrical power instrument goes to zero air output at port A. Double Acting (Relay A) Upon loss of electrical power instrument goes to full supply air output at port B. A goes to zero air output. Single Acting Reverse (Relay B) Upon loss of electrical power instrument goes to full supply air output at Port B. Instruction Manual Index D103605X012 Index January 2015 AMS Suite: Intelligent Device Manager, 3 Calibration in Progress Alert, 52 Certifications, Other Brazil, INMETRO, 7 India, PESO CCOE, 7 Russia, Kazakhstan and Belarus, CUTR, 7 Change Control Mode, 21 Change HART Universal Revision, 36 Characterization, 21 Custom Characterization, 21 Input Characterization, 21 Communication Protocol, HART 7 or HART 5, 6 Compliance Voltage, 11 Configuration, Initial, 3 Connections, 7 Electrical, 3 Pneumatic, 3 Analog Calibration Adjust, 39 Construction Materials, 7 Analog Input Range, 17 Input Range Hi, 17 Input Range Lo, 18 Control Mode, 21 Change Control Mode, 21 Control Mode, 21 Restart Control Mode, 21 A Actuator Compatibility, 7 Actuator Style, 28 Alert Record Full Alert, 51 Alert Record Not Empty Alert, 51 Alert Setup, 35 Alert Switch, Function, Output Terminal Configuration, 33 Alert Switch Source, 33 Analog Input Units, 17 Auto Calibration, 38 Error Messages, 38 Critical NVM Alert, 48 Auto Partial Stroke Test, 53 Customs Union Technical Regulations (CUTR), Russia, Kazakhstan and Belarus, Other Classifications/Certifications, 7 AutoCal in Progress Alert, 52 Auxiliary Terminal, Wiring Length Guidelines, 12 Auxiliary Terminal Action, 17 B Burst Mode, 34 Custom Characterization, Defining, 21 Cutoffs and Limits, 19 Hi Limit/Cutoff Point, 19 Hi Limit/Cutoff Select, 19 Lo Limit/Cutoff Point, 19 Lo Limit/Cutoff Select, 19 Cycle Count High Alert, 51 Burst Operation, setting for Tri-Loop, 14 C Calibration, 37 Analog Input, 42 Pressure Sensors, 41 PST, 45 Pushbutton, 40 Relay Adjustment, 43 Sensor, 41 Travel, 38 Auto, 38 Manual, 39 Calibration (CAL) Button, 17 D Declaration of SEP, 8 Default Parameters, Detailed Setup, 15 Descriptor, 17 Device Diagnostics, 48 Device Information, 47 Device Status, 48 Alert Record, 48 Alert Record, 51 Electronics, 48 Pressure, 49 Status, 52 Travel, 50 97 Instruction Manual Index D103605X012 January 2015 Travel History, 51 Diagnostic Data Available Alert, 52 Diagnostic in Progress Alert, 52 Diagnostics, 52 Partial Stroke Test, 52 Stroke Valve, 52 Digital Calibration Adjust, 39 DIP Switch, setting, 61 Drive Current Failure, 48 Drive Signal Alert, 48 Dynamic Response, 23 Lag Time, 23 SP Rate Close, 23 SP Rate Open, 23 E Edit Instrument Time, 18 Educational Services, 8 Electrical Classification, 7 frequency shift keying (FSK), 79 Function, Output Terminal Configuration Alert Switch, 33 Limit Switch, 33 Transmitter, 33 G Gain Values Pressure Tuning Sets, 27 Travel Tuning Sets, 24 Gauges, maintenance, 63 Guided Setup, 15 H HART Communication, principle of operation, 79 HART Filter, 9 HART Long Tag, 16 HART Tag, 16 Electrical Connections, 3 HART Tri‐Loop, 13 Installation Flowchart, 13 Electromagnetic Compatibility, 6 HART Variable Assignments, 34 EMC Summary Results, Immunity, 8 HARTr communications protocol, 3 End Point Pressure Control, 19 End Point Pressure Control (EPPC), 19 Expert tuning, travel tuning, 24, 27 F Fail Signal, Output Terminal Configuration, 33 Fallback Recovery, 20 Hazardous Area Approvals , 7 Hi Limit/Cutoff Point, 19 Hi Limit/Cutoff Select, 19 Humidity Testing Method, 7 I Fallback-Sensor/Tvl Deviation, Travel/Pressure Select, 19 I/P Converter maintenance, 59 removing, 59 replacing, 60 Fast Key Sequences, Field Communicator, 83 I/P Filter, replacing, 59 Feedback Connection, 28 Independent Linearity, 6 Field Communicator, Partial Stroke Test, 53 INMETRO, Brazil, Other Classifications/Certifications, 7 Field Communicator Menu Trees, 83 Input Characterization, 21 Field Device Malfunction, 49 Input Impedance, 7 Filter Settings, Typical Lead/Lag, 23 Input Range, 17 Flash Integrity Failure, 48 Input Range Hi, 17 Fallback-Sensor Failure, Travel/Pressure Select, 18 98 Instruction Manual Index D103605X012 Input Range Lo, 18 Input Signal, 6 Installation, 3 Instrument Level, Capabilities, 4 Instrument Mode, 16 Instrument Time, Edit, 18 Instrument Time is Approximate Alert, 49 Instument Serial Number, 17 Integral 4‐20 mA Position Transmitter, 7 specifications, 7 Integral Dead Zone, Travel/Pressure Integral Settings, 27 Integral Enable Pressure Tuning, 27 Travel Tuning, 26 Integral Gain Pressure Tuning, 27 Travel Tuning, 26 Integral Limit Switch, specifications, 7 Integral Setting, 27 Integral Switch, 7 Integrator Limit, Travel/Pressure Integral Settings, 28 Integrator Saturated High Alert, 50 Integrator Saturated Low Alert, 50  Internal Sensor Out of Limits, 49 January 2015 M Magnet Assembly, 28 Magnetic Feedback Assembly, removing, 56 Maintenance Gauges, Pipe Plugs, or Tire Valves, 63 I/P Converter, 59 module base, 56 Pneumatic Relay, 63 Printed Wiring Board Assembly, 61 Terminal Box, 64 tools required, 56 Maintenance and Troubleshooting, 55 Manual Calibration, 39 Manual Setup, 15 Max Travel Movement, 32 Maximum Cable Capacitance, 12 Maximum Output Capacity, 6 maximum supply pressure, 29 Message, 17 Minor Loop Sensor Alert, 49 MLFB Gain Pressure Tuning, 27 Travel Tuning, 26 Mode, Burst, 34 Module Base removing, 57 replacing, 58 Module Base Maintenance, 56 L Lag Time, 23 Mountings, 6 N Lead/Lag, 23 typical filter settings, 23 natural gas, as supply medium, 55 Lead/Lag Time, 23 Non­Critical NVM Alert, 48 Lightning and Surge Protection, 7 O Limit Switch, Function, Output Terminal Configuration, 33 Offline/Failed Alert, 48 Limit Switch Trip Point, 33 Options, 7 Lo Limit/Cutoff Point, 19 Output Circuit Communication Failure, 49 Lo Limit/Cutoff Select, 19 Output Pressure Sensor, Calibration, 41 Loop Current Validation Alert, 49 Output Signal, 6 99 Instruction Manual Index D103605X012 January 2015 Output Terminal Configuration, 33 Output Terminal Enable, 33 Outputs, 33 Burst Mode, 34 HART Variable Assignments, 34 Output Terminal Configuration, 33 Switch Configuration, 33 Transmitter Output, 34 Overview, 47 Device, 53 Status & Primary Purpose Variables, 47 P Partial Stroke Test Automatic (scheduled), 53 PST Enable, 32 PST Pressure Limit, 30 PST Start Point, 32 PST Variables, 32 Pause Time, 32 Test Speed, 32 Pressure Control, 20 Pressure Range High, 20 Pressure Range Lo, 20 Travel/Pressure Select, 18 Pressure Control Active Alert, 52 Pressure Fallback Active Alert, 50 Pressure Range High, 20 Pressure Range Lo, 20 Pressure Sensor Alert, 49 Pressure Sensors, Calibration, 41 Pressure Tuning, 27 Pressure Tuning Set, 27 Pressure Tuning Sets, Gain Values, 27 Pressure Units, 17 Principle of Operation DVC6200, 79 HART Communication, 79 Printed Wiring Board Assembly maintenance, 61 removing, 61 replacing, 61 Partial Stroke Test (ODV only), 52 Auxiliary Terminal, Local Pushbutton, 53 Field Communicator, 53 Proportional Gain Pressure Tuning, 27 Travel Tuning, 25 Partial Stroke Test (PST), 30 PST Variables, Max Travel Movement, 32 PST Calibration, 45 Parts Kits, 69 List, 70 ordering, 69 PST Pressure Limit, 30 Pause Time, 32 Performance Tuner, 26 PST Enable, 32 PST Start Point, 32 PST Variables, 32 Pushbutton Calibration, 40 R PESO CCOE, India, Other Classifications/Certifications, 7 Reference Voltage Failure, 48 Pipe Plugs, maintenance, 63 Related Documents, 5 Pneumatic Connections, 3 Pneumatic Relay maintenance, 63 removing, 63 replacing, 63 Relay Adjustment, 43 Relay Type, 28 Restart Control Mode, 21 Restart Processor, 66 RShaft End Mount, Magnet Assembly, 28 Polling Address, 17 RShaft Window #1, Magnet Assembly, 28 Position Transmitter, 33 RShaft Window #2, Magnet Assembly, 28 100 Instruction Manual Index D103605X012 S January 2015 T Sensor Calibration, 41 Technical Support Checklist, 68 Serial Number Instrument, 17 Valve, 17 Temperature Limits, Operating Ambient, 6 Service Tools, 48 Device Status, 48 Terminal Box, 17 Auxiliary Terminal Action, 17 Calibration (CAL) Button, 17 maintenance, 64 removing, 64 replacing, 65 Set Point Filter Lag Time, 23 Set Point Filter Lead/Lag Time, 23 SP Rate Close, 23 SP Rate Open, 23 Spec Sheet, 18 Temperature Sensor Alert, 49 Temperature Units, 17 Test Speed, 32 Tire Valves, maintenance, 63 Specifications, 5 Transmitter, 7, 33 Function, Output Terminal Configuration, 33 Specifications, 7 SStem #1 Roller, Magnet Assembly, 28 Transmitter Output, 34 Special App, Relay, 28 SStem #110, Magnet Assembly, 28 SStem #19, Magnet Assembly, 28 SStem #210, Magnet Assembly, 28 SStem #25, Magnet Assembly, 28 Travel Accumulator High Alert, 51 Travel Alert Hi, 50 Travel Alert Hi Hi, 50 Travel Alert Lo, 50 Travel Alert Lo Lo, 50 SStem #38, Magnet Assembly, 28 Travel Calibration, 38 SStem #50, Magnet Assembly, 28 Travel Control, Travel/Pressure Select, 18 SStem #7, Magnet Assembly, 28 Travel Deviation Alert, 50 Stabilize/Optimize, 26 Travel Limit/Cutoff Hi Alert, 50 Status & Primary Purpose Variables, Device Information, 47 Travel Limit/Cutoff Lo Alert, 50 Steady‐State Air Consumption, 6 Travel Sensor Motion, 29 Stroke Valve, 52 Travel Tuning, 24 Performance Tuner, 26 Stabilize/Optimize, 26 Supply Pressure, 6 Travel Sensor Alert, 49 Supply Pressure Alert, 49 Travel Tuning Set, 24 Supply Pressure Sensor, Calibration, 42 Travel Tuning Sets, Gain Values, 24 Switch, 33 Specifications, 7 Travel/Pressure Control, 18 Control Mode, 21 Cutoffs and Limits, 19 End Point Pressure Control, 19 Fallback Recovery, 20 Pressure Control, 20 Pressure Fallback, 20 Travel/Pressure Select, 18 Switch Closed, 33 Switch Configuration, 33 Alert Switch Source, 33 Limit Switch Trip Point, 33 Switch Closed, 33 101 Instruction Manual Index D103605X012 January 2015 Tvl Dev Press Fallback, 20 Tvl Dev Press Fallback Time, 20 Travel/Pressure Select, 18 Fallback-Sensor/Tvl Deviation, 18 Pressure Control, 18 Pressure-Sensor Fallback, 18 Travel Control, 18 Troubleshooting Checking Voltage Available, 65 Communications or Output, 65 instrument, 66 Tuning, 24 Integral Settings, 27 Pressure, 27 Travel, 24 Tuning Set Pressure, 27 Travel, 24 Tvl Dev Press Fallback, 20 Tvl Dev Press Fallback Time, 20 U Units Analog Input, 17 Pressure, 17 Temperature, 17 102 V Valve Serial Number, 17 Valve Style, 28 ValveLink software, 3 Variable Out of Range, 49 Variables, Status & Primary Purpose, 47 Velocity Gain, Travel Tuning, 25 Vibration Testing Method, 7 Voltage Available, 9 checking, 65 W Weight DVC6200, 7 DVC6205, 7 DVC6215, 7 Wiring Practices, 9 Control System Requirements, 9 Compliance Voltage, 11 HART Filter, 9 Voltage Available, 9 Maximum Cable Capacitance, 12 Write Protection, 16 Z Zero Power Condition, 29 Instruction Manual D103605X012 DVC6200 Digital Valve Controller January 2015 103 DVC6200 Digital Valve Controller January 2015 Instruction Manual D103605X012 Neither Emerson, Emerson Process Management, nor any of their affiliated entities assumes responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use, and maintenance of any product remains solely with the purchaser and end user. Fisher, FIELDVUE, ValveLink, PlantWeb, PROVOX, Rosemount, Tri-Loop, DeltaV, RS3, and THUM are marks owned by one of the companies in the Emerson Process Management business unit of Emerson Electric Co. Emerson Process Management, Emerson, and the Emerson logo are trademarks and service marks of Emerson Electric Co. HART is a mark owned by the HART Communication Foundation. All other marks are the property of their respective owners. The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice. Emerson Process Management Marshalltown, Iowa 50158 USA Sorocaba, 18087 Brazil Chatham, Kent ME4 4QZ UK Dubai, United Arab Emirates Singapore 128461 Singapore www.Fisher.com 104 E 2012, 2015 Fisher Controls International LLC. All rights reserved.